Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2623: 157-173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36602685

RESUMO

Recombinant protein expression has been key to studying dynein's mechanochemistry and structure-function relationship. To gain further insight into the energy-converting mechanisms and interactions with an increasing variety of dynein cargos and regulators, rapid expression and purification of a variety of dynein proteins and fragments are important. Here we describe transient expression of cytoplasmic dynein in HEK293 cells and fast small-scale purification for high-throughput protein engineering. Mammalian cell expression might be generally considered to be a laborious process, but with recent technology and some simple inexpensive custom-built labware, dynein expression and purification from mammalian cells can be fast and easy.


Assuntos
Dineínas do Citoplasma , Dineínas , Animais , Humanos , Dineínas do Citoplasma/genética , Dineínas/genética , Dineínas/metabolismo , Células HEK293 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Engenharia de Proteínas , Microtúbulos/metabolismo , Mamíferos/metabolismo
2.
Science ; 375(6585): 1159-1164, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35271337

RESUMO

Intracellular transport is the basis of microscale logistics within cells and is powered by biomolecular motors. Mimicking transport for in vitro applications has been widely studied; however, the inflexibility in track design and control has hindered practical applications. Here, we developed protein-based motors that move on DNA nanotubes by combining a biomolecular motor dynein and DNA binding proteins. The new motors and DNA-based nanoarchitectures enabled us to arrange the binding sites on the track, locally control the direction of movement, and achieve multiplexed cargo transport by different motors. The integration of these technologies realized microscale cargo sorters and integrators that automatically transport molecules as programmed in DNA sequences on a branched DNA nanotube. Our system should provide a versatile, controllable platform for future applications.


Assuntos
Transporte Biológico , Proteínas de Ligação a DNA/química , DNA/química , Dineínas/metabolismo , Nanotubos , Engenharia de Proteínas , Dineínas/química , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos
3.
Biochem Biophys Res Commun ; 523(4): 1014-1019, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31973818

RESUMO

Dynein motor proteins usually work as a group in vesicle transport, mitosis, and ciliary/flagellar beating inside cells. Despite the obvious importance of the functions of dynein, the effect of inter-dynein interactions on collective motility remains poorly understood due to the difficulty in building large dynein ensembles with defined geometry. Here, we describe a method to build dynein ensembles to investigate the collective motility of dynein on microtubules. Using electron microscopy, we show that tens to hundreds of cytoplasmic dynein monomers were anchored along a 4- or 10-helix DNA nanotube with an average periodicity of 19 or 44 nm (a programmed periodicity of 14 or 28 nm, respectively). They drove the sliding movement of DNA nanotubes along microtubules at a velocity of 170-620 nm/s. Reducing the stiffness of DNA nanotubes made the nanotube movement discontinuous and considerably slower. Decreasing the spacing between motors simply slowed down the nanotube movement. This slowdown was independent of the number of motors involved but heavily dependent on motor-motor distance. This suggests that steric hindrance or mechanical coupling between dynein molecules was responsible for the slowdown. Furthermore, we observed cyclical buckling of DNA nanotubes on microtubules, reminiscent of ciliary/flagellar beating. These results highlight the importance of the geometric arrangement of dynein motors on their collective motility.


Assuntos
DNA/metabolismo , Dineínas/metabolismo , Nanotubos/química , DNA/ultraestrutura , Dineínas/ultraestrutura , Humanos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Nanotubos/ultraestrutura , Transporte Proteico , Proteínas Recombinantes/metabolismo
4.
Nat Nanotechnol ; 12(3): 233-237, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27842063

RESUMO

Biomolecular motors such as myosin, kinesin and dynein are protein machines that can drive directional movement along cytoskeletal tracks and have the potential to be used as molecule-sized actuators. Although control of the velocity and directionality of biomolecular motors has been achieved, the design and construction of novel biomolecular motors remains a challenge. Here we show that naturally occurring protein building blocks from different cytoskeletal systems can be combined to create a new series of biomolecular motors. We show that the hybrid motors-combinations of a motor core derived from the microtubule-based dynein motor and non-motor actin-binding proteins-robustly drive the sliding movement of an actin filament. Furthermore, the direction of actin movement can be reversed by simply changing the geometric arrangement of these building blocks. Our synthetic strategy provides an approach to fabricating biomolecular machines that work along artificial tracks at nanoscale dimensions.


Assuntos
Citoesqueleto/química , Dineínas/química , Proteínas dos Microfilamentos/química , Citoesqueleto/genética , Dineínas/genética , Humanos , Proteínas dos Microfilamentos/genética
5.
Proc Natl Acad Sci U S A ; 111(26): 9461-6, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24979786

RESUMO

Outer arm dynein (OAD) in cilia and flagella is bound to the outer doublet microtubules every 24 nm. Periodic binding of OADs at specific sites is important for efficient cilia/flagella beating; however, the molecular mechanism that specifies OAD arrangement remains elusive. Studies using the green alga Chlamydomonas reinhardtii have shown that the OAD-docking complex (ODA-DC), a heterotrimeric complex present at the OAD base, functions as the OAD docking site on the doublet. We find that the ODA-DC has an ellipsoidal shape ∼24 nm in length. In mutant axonemes that lack OAD but retain the ODA-DC, ODA-DC molecules are aligned in an end-to-end manner along the outer doublets. When flagella of a mutant lacking ODA-DCs are supplied with ODA-DCs upon gamete fusion, ODA-DC molecules first bind to the mutant axonemes in the proximal region, and the occupied region gradually extends toward the tip, followed by binding of OADs. This and other results indicate that a cooperative association of the ODA-DC underlies its function as the OAD-docking site and is the determinant of the 24-nm periodicity.


Assuntos
Axonema/metabolismo , Dineínas/metabolismo , Substâncias Macromoleculares/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Western Blotting , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Eletroporação , Imunofluorescência , Microscopia Eletrônica , Microscopia de Fluorescência , Ligação Proteica , Corantes de Rosanilina , Ultracentrifugação
6.
Proc Natl Acad Sci U S A ; 110(2): 501-6, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23267076

RESUMO

Intracellular transport is thought to be achieved by teams of motor proteins bound to a cargo. However, the coordination within a team remains poorly understood as a result of the experimental difficulty in controlling the number and composition of motors. Here, we developed an experimental system that links together defined numbers of motors with defined spacing on a DNA scaffold. By using this system, we linked multiple molecules of two different types of kinesin motors, processive kinesin-1 or nonprocessive Ncd (kinesin-14), in vitro. Both types of kinesins markedly increased their processivities with motor number. Remarkably, despite the poor processivity of individual Ncd motors, the coupling of two Ncd motors enables processive movement for more than 1 µm along microtubules (MTs). This improvement was further enhanced with decreasing spacing between motors. Force measurements revealed that the force generated by groups of Ncd is additive when two to four Ncd motors work together, which is much larger than that generated by single motors. By contrast, the force of multiple kinesin-1s depends only weakly on motor number. Numerical simulations and single-molecule unbinding measurements suggest that this additive nature of the force exerted by Ncd relies on fast MT binding kinetics and the large drag force of individual Ncd motors. These features would enable small groups of Ncd motors to crosslink MTs while rapidly modulating their force by forming clusters. Thus, our experimental system may provide a platform to study the collective behavior of motor proteins from the bottom up.


Assuntos
Cinesinas/metabolismo , Proteínas Motores Moleculares/metabolismo , Proteínas Oncogênicas/metabolismo , Algoritmos , Animais , Sequência de Bases , Transporte Biológico/fisiologia , Biofísica , Dimerização , Escherichia coli , Fluorescência , Vetores Genéticos/genética , Humanos , Cinesinas/química , Cinesinas/genética , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Proteínas Motores Moleculares/genética , Dados de Sequência Molecular , Método de Monte Carlo , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Pinças Ópticas , Ratos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
7.
J Biol Chem ; 284(9): 5927-35, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19124458

RESUMO

Outer arm dynein (OAD) of cilia and flagella contains two or three distinct heavy chains, each having a motor function. To elucidate their functional difference, we compared the in vitro motile properties of Chlamydomonas wild-type OAD containing the alpha, beta, and gamma heavy chains and three kinds of mutant OADs, each lacking one of the three heavy chains. For systematic comparison, a method was developed to introduce a biotin tag into a subunit, LC2, which served as the specific anchoring site on an avidin-coated glass surface. Wild-type OAD displayed microtubule gliding in the presence of ATP and ADP, with a maximal velocity of 5.0 mum/s, which is approximately 1/4 of the microtubule sliding velocity in the axoneme. The duty ratio was estimated to be as low as 0.08. The absence of the beta heavy chain lowered both the gliding velocity and ATPase activity, whereas the absence of the gamma heavy chain increased both activities. Strikingly, the absence of the alpha heavy chain lowered the gliding velocity but increased the ATPase activity. Thus, the three heavy chains are likely to play distinct roles and regulate each other to achieve coordinated force production.


Assuntos
Movimento Celular , Chlamydomonas/enzimologia , Dineínas/genética , Dineínas/metabolismo , Microtúbulos/metabolismo , Animais , Biotinilação , Western Blotting , Chlamydomonas/genética , Cílios/fisiologia , Flagelos/fisiologia , Mutação/genética , Subunidades Proteicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA