Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Cancer Res Commun ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709066

RESUMO

PURPOSE: Appendiceal Adenocarcinoma (AA) remains an orphan disease with limited treatment options for patients unable to undergo surgical resection. Evidence supporting the efficacy of combined VEGF and PD-1 inhibition in other tumor types provided a compelling rationale for investigating this combination in AA, where immune checkpoint inhibitors (ICIs) have not been previously explored. PATIENTS AND METHODS: We conducted a prospective, single arm phase 2 study evaluating efficacy and safety of atezolizumab in conjunction with bevacizumab (Atezo+Bev) in advanced, unresectable AA. RESULTS: Patients treated with the Atezo+Bev combination had 100% disease control rate (1 PR, 15 SD) with progression free survival (PFS) of 18.3 months and overall survival not-yet-reached with median duration of follow up of 40 months. These survival intervals were significantly longer relative to a clinically and molecularly matched synthetic control cohort treated with cytotoxic chemotherapy designed for colorectal cancer (PFS of 4.4 months, p = .041). CONCLUSIONS: In light of recent data demonstrating a lack of efficacy of 5-FU based chemotherapy, Atezo+Bev is a promising treatment option for patients with low-grade unresectable AA; further study is warranted.

2.
Front Oncol ; 14: 1324057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590653

RESUMO

Accurate diagnoses are crucial in determining the most effective treatment across different cancers. In challenging cases, morphology-based traditional pathology methods have important limitations, while molecular profiling can provide valuable information to guide clinical decisions. We present a 35-year female with lung cancer with choriocarcinoma features. Her disease involved the right lower lung, brain, and thoracic lymph nodes. The pathology from brain metastasis was reported as "metastatic choriocarcinoma" (a germ cell tumor) by local pathologists. She initiated carboplatin and etoposide, a regimen for choriocarcinoma. Subsequently, her case was assessed by pathologists from an academic cancer center, who gave the diagnosis of "adenocarcinoma with aberrant expression of ß-hCG" and finally pathologists at our hospital, who gave the diagnosis of "poorly differentiated carcinoma with choriocarcinoma features". Genomic profiling detected a KRAS G13R mutation and transcriptomics profiling was suggestive of lung origin. The patient was treated with carboplatin/paclitaxel/ipilimumab/nivolumab followed by consolidation radiation therapy. She had no evidence of progression to date, 16 months after the initial presentation. The molecular profiling could facilitate diagnosing of challenging cancer cases. In addition, chemoimmunotherapy and local consolidation radiation therapy may provide promising therapeutic options for patients with lung cancer exhibiting choriocarcinoma features.

3.
Clin Cancer Res ; 30(10): 2272-2285, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488813

RESUMO

PURPOSE: Develop and deploy a robust discovery platform that encompasses heterogeneity, clinical annotation, and molecular characterization and overcomes the limited availability of prostate cancer models. This initiative builds on the rich MD Anderson (MDA) prostate cancer (PCa) patient-derived xenograft (PDX) resource to complement existing publicly available databases by addressing gaps in clinically annotated models reflecting the heterogeneity of potentially lethal and lethal prostate cancer. EXPERIMENTAL DESIGN: We performed whole-genome, targeted, and RNA sequencing in representative samples of the same tumor from 44 PDXs derived from 38 patients linked to donor tumor metadata and corresponding organoids. The cohort includes models derived from different morphologic groups, disease states, and involved organ sites (including circulating tumor cells), as well as paired samples representing heterogeneity or stages before and after therapy. RESULTS: The cohort recapitulates clinically reported alterations in prostate cancer genes, providing a data resource for clinical and molecular interrogation of suitable experimental models. Paired samples displayed conserved molecular alteration profiles, suggesting the relevance of other regulatory mechanisms (e.g., epigenomic) influenced by the microenvironment and/or treatment. Transcriptomically, models were grouped on the basis of morphologic classification. DNA damage response-associated mechanisms emerged as differentially regulated between adenocarcinoma and neuroendocrine prostate cancer in a cross-interrogation of PDX/patient datasets. CONCLUSIONS: We addressed the gap in clinically relevant prostate cancer models through comprehensive molecular characterization of MDA PCa PDXs, providing a discovery platform that integrates with patient data and benchmarked to therapeutically relevant consensus clinical groupings. This unique resource supports robust hypothesis generation and testing from basic, translational, and clinical perspectives.


Assuntos
Neoplasias da Próstata , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Masculino , Animais , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Biomarcadores Tumorais/genética , Xenoenxertos , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica
4.
Sci Adv ; 10(11): eadd9342, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478609

RESUMO

Tumors represent ecosystems where subclones compete during tumor growth. While extensively investigated, a comprehensive picture of the interplay of clonal lineages during dissemination is still lacking. Using patient-derived pancreatic cancer cells, we created orthotopically implanted clonal replica tumors to trace clonal dynamics of unperturbed tumor expansion and dissemination. This model revealed the multifaceted nature of tumor growth, with rapid changes in clonal fitness leading to continuous reshuffling of tumor architecture and alternating clonal dominance as a distinct feature of cancer growth. Regarding dissemination, a large fraction of tumor lineages could be found at secondary sites each having distinctive organ growth patterns as well as numerous undescribed behaviors such as abortive colonization. Paired analysis of primary and secondary sites revealed fitness as major contributor to dissemination. From the analysis of pro- and nonmetastatic isogenic subclones, we identified a transcriptomic signature able to identify metastatic cells in human tumors and predict patients' survival.


Assuntos
Ecossistema , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Perfilação da Expressão Gênica , Transcriptoma
5.
Nat Commun ; 15(1): 1821, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418901

RESUMO

Interferon gamma (IFNγ) is a critical cytokine known for its diverse roles in immune regulation, inflammation, and tumor surveillance. However, while IFNγ levels were elevated in sera of most newly diagnosed acute myeloid leukemia (AML) patients, its complex interplay in AML remains insufficiently understood. We aim to characterize these complex interactions through comprehensive bulk and single-cell approaches in bone marrow of newly diagnosed AML patients. We identify monocytic AML as having a unique microenvironment characterized by IFNγ producing T and NK cells, high IFNγ signaling, and immunosuppressive features. IFNγ signaling score strongly correlates with venetoclax resistance in primary AML patient cells. Additionally, IFNγ treatment of primary AML patient cells increased venetoclax resistance. Lastly, a parsimonious 47-gene IFNγ score demonstrates robust prognostic value. In summary, our findings suggest that inhibiting IFNγ is a potential treatment strategy to overcoming venetoclax resistance and immune evasion in AML patients.


Assuntos
Interferon gama , Leucemia Mieloide Aguda , Sulfonamidas , Humanos , Interferon gama/farmacologia , Prognóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Microambiente Tumoral
6.
Brachytherapy ; 23(2): 123-135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38129211

RESUMO

BACKGROUND: Chemoradiation (CRT) may modulate the immune milieu as an in-situ vaccine. Rapid dose delivery of brachytherapy has unclear impact on T-cell repertoires. HPV-associated cancers express viral oncoproteins E6/E7, which enable tracking antigen/tumor-specific immunity during CRT. METHODS: Thirteen cervical cancer patients on a multi-institutional prospective protocol from 1/2020-1/2023 underwent standard-of-care CRT with pulsed-dose-rate brachytherapy boost (2 fractions). Cervix swabs at various timepoints underwent multiplex DNA deep sequencing of the TCR-ß/CDR3 region with immunoSEQ. Separately, HPV-responsive T-cell clones were also expanded ex vivo. Statistical analysis was via Mann-Whitney-U. RESULTS: TCR productive clonality, templates, frequency, or rearrangements increased post-brachytherapy in 8 patients. Seven patients had E6/E7-responsive evolution over CRT with increased productive templates (ranges: 1.2-50.2 fold-increase from baseline), frequency (1.2-1.7), rearrangements (1.2-40.2), and clonality (1.2-15.4). Five patients had HPV-responsive clonal expansion post-brachytherapy, without changes in HPV non-responsive clones. Epitope mapping revealed VDJ rearrangements targeting cervical cancer-associated antigens in 5 patients. The only two patients with disease recurrence lacked response in all metrics. A lack of global TCR remodeling correlated with worse recurrence-free survival, p = 0.04. CONCLUSION: CRT and brachytherapy alters the cervical cancer microenvironment to facilitate the expansion of specific T-cell populations, which may contribute to treatment efficacy.


Assuntos
Braquiterapia , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/radioterapia , Colo do Útero , Infecções por Papillomavirus/complicações , Linfócitos T , Braquiterapia/métodos , Estudos Prospectivos , Recidiva Local de Neoplasia , Receptores de Antígenos de Linfócitos T , Microambiente Tumoral
7.
Pigment Cell Melanoma Res ; 36(6): 542-556, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804122

RESUMO

Mucosal melanoma remains a rare cancer with high mortality and a paucity of therapeutic options. This is due in significant part to its low incidence leading to limited patient access to expert care and downstream clinical/basic science data for research interrogation. Clinical challenges such as delayed and at times inaccurate diagnoses, and lack of consensus tumor staging have added to the suboptimal outcomes for these patients. Clinical trials, while promising, have been difficult to activate and accrue. While individual institutions and investigators have attempted to seek solutions to such problems, international, national, and local partnership may provide the keys to more efficient and innovative paths forward. Furthermore, a mucosal melanoma coalition would provide a potential network for patients and caregivers to seek expert opinion and advice. The Melanoma Research Foundation Mucosal Melanoma Meeting (December 16, 2022, New York, USA) highlighted the current clinical challenges faced by patients, providers, and scientists, identified current and future clinical trial investigations in this rare disease space, and aimed to increase national and international collaboration among the mucosal melanoma community in an effort to improve patient outcomes. The included proceedings highlight the clinical challenges of mucosal melanoma, global clinical trial experience, basic science advances in mucosal melanoma, and future directions, including the creation of shared rare tumor registries and enhanced collaborations.


Assuntos
Melanoma , Humanos , New York , Melanoma/terapia , Melanoma/patologia , Mucosa/patologia , Terapia Combinada , Estadiamento de Neoplasias
8.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37786705

RESUMO

Mesenchymal plasticity has been extensively described in advanced and metastatic epithelial cancers; however, its functional role in malignant progression, metastatic dissemination and therapy response is controversial. More importantly, the role of epithelial mesenchymal transition (EMT) and cell plasticity in tumor heterogeneity, clonal selection and clonal evolution is poorly understood. Functionally, our work clarifies the contribution of EMT to malignant progression and metastasis in pancreatic cancer. We leveraged ad hoc somatic mosaic genome engineering, lineage tracing and ablation technologies and dynamic genetic reporters to trace and ablate tumor-specific lineages along the phenotypic spectrum of epithelial to mesenchymal plasticity. The experimental evidences clarify the essential contribution of mesenchymal lineages to pancreatic cancer evolution and metastatic dissemination. Spatial genomic analysis combined with single cell transcriptomic and epigenomic profiling of epithelial and mesenchymal lineages reveals that EMT promotes with the emergence of chromosomal instability (CIN). Specifically tumor lineages with mesenchymal features display highly conserved patterns of genomic evolution including complex structural genomic rearrangements and chromotriptic events. Genetic ablation of mesenchymal lineages robustly abolished these mutational processes and evolutionary patterns, as confirmed by cross species analysis of pancreatic and other human epithelial cancers. Mechanistically, we discovered that malignant cells with mesenchymal features display increased chromatin accessibility, particularly in the pericentromeric and centromeric regions, which in turn results in delayed mitosis and catastrophic cell division. Therefore, EMT favors the emergence of high-fitness tumor cells, strongly supporting the concept of a cell-state, lineage-restricted patterns of evolution, where cancer cell sub-clonal speciation is propagated to progenies only through restricted functional compartments. Restraining those evolutionary routes through genetic ablation of clones capable of mesenchymal plasticity and extinction of the derived lineages completely abrogates the malignant potential of one of the most aggressive form of human cancer.

9.
Cancer Cell ; 41(11): 1945-1962.e11, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37863066

RESUMO

Tumor microbiota can produce active metabolites that affect cancer and immune cell signaling, metabolism, and proliferation. Here, we explore tumor and gut microbiome features that affect chemoradiation response in patients with cervical cancer using a combined approach of deep microbiome sequencing, targeted bacterial culture, and in vitro assays. We identify that an obligate L-lactate-producing lactic acid bacterium found in tumors, Lactobacillus iners, is associated with decreased survival in patients, induces chemotherapy and radiation resistance in cervical cancer cells, and leads to metabolic rewiring, or alterations in multiple metabolic pathways, in tumors. Genomically similar L-lactate-producing lactic acid bacteria commensal to other body sites are also significantly associated with survival in colorectal, lung, head and neck, and skin cancers. Our findings demonstrate that lactic acid bacteria in the tumor microenvironment can alter tumor metabolism and lactate signaling pathways, causing therapeutic resistance. Lactic acid bacteria could be promising therapeutic targets across cancer types.


Assuntos
Microbiota , Neoplasias do Colo do Útero , Feminino , Humanos , Ácido Láctico/metabolismo , Neoplasias do Colo do Útero/radioterapia , Lactobacillus/genética , Lactobacillus/metabolismo , Microambiente Tumoral
10.
Cell ; 186(18): 3968-3982.e15, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37586362

RESUMO

Ductal carcinoma in situ (DCIS) is a common precursor of invasive breast cancer. Our understanding of its genomic progression to recurrent disease remains poor, partly due to challenges associated with the genomic profiling of formalin-fixed paraffin-embedded (FFPE) materials. Here, we developed Arc-well, a high-throughput single-cell DNA-sequencing method that is compatible with FFPE materials. We validated our method by profiling 40,330 single cells from cell lines, a frozen tissue, and 27 FFPE samples from breast, lung, and prostate tumors stored for 3-31 years. Analysis of 10 patients with matched DCIS and cancers that recurred 2-16 years later show that many primary DCIS had already undergone whole-genome doubling and clonal diversification and that they shared genomic lineages with persistent subclones in the recurrences. Evolutionary analysis suggests that most DCIS cases in our cohort underwent an evolutionary bottleneck, and further identified chromosome aberrations in the persistent subclones that were associated with recurrence.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Feminino , Humanos , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Progressão da Doença , Genômica/métodos , Análise da Expressão Gênica de Célula Única , Linhagem Celular Tumoral
11.
Res Sq ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37503252

RESUMO

While the nervous system has reciprocal interactions with both cancer and the immune system, little is known about the potential role of tumor associated nerves (TANs) in modulating anti-tumoral immunity. Moreover, while peri-neural invasion is a well establish poor prognostic factor across cancer types, the mechanisms driving this clinical effect remain unknown. Here, we provide clinical and mechniastic association between TANs damage and resistance to anti-PD-1 therapy. Using electron microscopy, electrical conduction studies, and tumor samples of cutaneous squamous cell carcinoma (cSCC) patients, we showed that cancer cells can destroy myelin sheath and induce TANs degeneration. Multi-omics and spatial analyses of tumor samples from cSCC patients who underwent neoadjuvant anti-PD-1 therapy demonstrated that anti-PD-1 non-responders had higher rates of peri-neural invasion, TANs damage and degeneration compared to responders, both at baseline and following neoadjuvant treatment. Tumors from non-responders were also characterized by a sustained signaling of interferon type I (IFN-I) - known to both propagate nerve degeneration and to dampen anti-tumoral immunity. Peri-neural niches of non-responders were characterized by higher immune activity compared to responders, including immune-suppressive activity of M2 macrophages, and T regulatory cells. This tumor promoting inflammation expanded to the rest of the tumor microenvironment in non-responders. Anti-PD-1 efficacy was dampened by inducing nerve damage prior to treatment administration in a murine model. In contrast, anti-PD-1 efficacy was enhanced by denervation and by interleukin-6 blockade. These findings suggested a potential novel anti-PD-1 resistance drived by TANs damage and inflammation. This resistance mechanism is targetable and may have therapeutic implications in other neurotropic cancers with poor response to anti-PD-1 therapy such as pancreatic, prostate, and breast cancers.

12.
Ann Surg ; 278(4): 538-548, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37465976

RESUMO

OBJECTIVE: External exposures, the host, and the microbiome interact in oncology. We aimed to investigate tumoral microbiomes in young-onset rectal cancers (YORCs) for profiles potentially correlative with disease etiology and biology. BACKGROUND: YORC is rapidly increasing, with 1 in 4 new rectal cancer cases occurring under the age of 50 years. Its etiology is unknown. METHODS: YORC (<50 y old) or later-onset rectal cancer (LORC, ≥50 y old) patients underwent pretreatment biopsied of tumor and tumor-adjacent normal (TAN) tissue. After whole genome sequencing, metagenomic analysis quantified microbial communities comparing tumors versus TANs and YORCs versus LORCs, controlling for multiple testing. Response to neoadjuvant therapy (NT) was categorized as major pathological response (MPR, ≤10% residual viable tumor) versus non-MPR. RESULTS: Our 107 tumors, 75 TANs from 37 (35%) YORCs, and 70 (65%) LORCs recapitulated bacterial species were previously associated with colorectal cancers (all P <0.0001). YORC and LORC tumoral microbiome signatures were distinct. After NT, 13 patients (12.4%) achieved complete pathologic response, whereas MPR occurred in 47 patients (44%). Among YORCs, MPR was associated with Fusobacterium nucleaum , Bacteroides dorei, and Ruminococcus bromii (all P <0.001), but MPR in LORC was associated with R. bromii ( P <0.001). Network analysis of non-MPR tumors demonstrated a preponderance of oral bacteria not observed in MPR tumors. CONCLUSIONS: Microbial signatures were distinct between YORC and LORC. Failure to achieve an MPR was associated with oral bacteria in tumors. These findings urge further studies to decipher correlative versus mechanistic associations but suggest a potential for microbial modulation to augment current treatments.


Assuntos
Microbiota , Neoplasias Retais , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Neoplasias Retais/terapia , Neoplasias Retais/patologia , Biópsia
13.
Cancer Cell ; 41(8): 1407-1426.e9, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37419119

RESUMO

Understanding tumor microenvironment (TME) reprogramming in gastric adenocarcinoma (GAC) progression may uncover novel therapeutic targets. Here, we performed single-cell profiling of precancerous lesions, localized and metastatic GACs, identifying alterations in TME cell states and compositions as GAC progresses. Abundant IgA+ plasma cells exist in the premalignant microenvironment, whereas immunosuppressive myeloid and stromal subsets dominate late-stage GACs. We identified six TME ecotypes (EC1-6). EC1 is exclusive to blood, while EC4, EC5, and EC2 are highly enriched in uninvolved tissues, premalignant lesions, and metastases, respectively. EC3 and EC6, two distinct ecotypes in primary GACs, associate with histopathological and genomic characteristics, and survival outcomes. Extensive stromal remodeling occurs in GAC progression. High SDC2 expression in cancer-associated fibroblasts (CAFs) is linked to aggressive phenotypes and poor survival, and SDC2 overexpression in CAFs contributes to tumor growth. Our study provides a high-resolution GAC TME atlas and underscores potential targets for further investigation.


Assuntos
Adenocarcinoma , Fibroblastos Associados a Câncer , Lesões Pré-Cancerosas , Neoplasias Gástricas , Humanos , Ecótipo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Adenocarcinoma/patologia , Fibroblastos Associados a Câncer/patologia , Lesões Pré-Cancerosas/patologia , Células Estromais/patologia , Microambiente Tumoral
14.
Cancer Immunol Res ; : OF1-OF18, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285177

RESUMO

Comprehensive investigation of CD8+ T cells in acute myeloid leukemia (AML) is essential for developing immunotherapeutic strategies beyond immune checkpoint blockade. Herein, we performed single-cell RNA profiling of CD8+ T cells from 3 healthy bone marrow donors and 23 newly diagnosed (NewlyDx) and 8 relapsed/refractory (RelRef) patients with AML. Cells coexpressing canonical exhaustion markers formed a cluster constituting <1% of all CD8+ T cells. We identified two effector CD8+ T-cell subsets characterized by distinct cytokine and metabolic profiles that were differentially enriched in NewlyDx and RelRef patients. We refined a 25-gene CD8-derived signature correlating with therapy resistance, including genes associated with activation, chemoresistance, and terminal differentiation. Pseudotemporal trajectory analysis supported enrichment of a terminally differentiated state in CD8+ T cells with high CD8-derived signature expression at relapse or refractory disease. Higher expression of the 25-gene CD8 AML signature correlated with poorer outcomes in previously untreated patients with AML, suggesting that the bona fide state of CD8+ T cells and their degree of differentiation are clinically relevant. Immune clonotype tracking revealed more phenotypic transitions in CD8 clonotypes in NewlyDx than in RelRef patients. Furthermore, CD8+ T cells from RelRef patients had a higher degree of clonal hyperexpansion associated with terminal differentiation and higher CD8-derived signature expression. Clonotype-derived antigen prediction revealed that most previously unreported clonotypes were patient-specific, suggesting significant heterogeneity in AML immunogenicity. Thus, immunologic reconstitution in AML is likely to be most successful at earlier disease stages when CD8+ T cells are less differentiated and have greater capacity for clonotype transitions.

15.
iScience ; 26(6): 106913, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37305699

RESUMO

Advanced gastric adenocarcinoma (GAC) often leads to peritoneal carcinomatosis (PC) and is associated with very poor outcome. Here we report the comprehensive proteogenomic study of ascites derived cells from a prospective GAC cohort (n = 26 patients with peritoneal carcinomatosis, PC). A total of 16,449 proteins were detected from whole cell extracts (TCEs). Unsupervised hierarchical clustering resulted in three distinct groups that reflected extent of enrichment in tumor cells. Integrated analysis revealed enriched biological pathways and notably, some druggable targets (cancer-testis antigens, kinases, and receptors) that could be exploited to develop effective therapies and/or tumor stratifications. Systematic comparison of expression levels of proteins and mRNAs revealed special expression patterns of key therapeutics target notably high mRNA and low protein expression of HAVCR2 (TIM-3), and low mRNA but high protein expression of cancer-testis antigens CTAGE1 and CTNNA2. These results inform strategies to target GAC vulnerabilities.

16.
Nat Cancer ; 4(7): 984-1000, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37365326

RESUMO

Molecular routes to metastatic dissemination are critical determinants of aggressive cancers. Through in vivo CRISPR-Cas9 genome editing, we generated somatic mosaic genetically engineered models that faithfully recapitulate metastatic renal tumors. Disruption of 9p21 locus is an evolutionary driver to systemic disease through the rapid acquisition of complex karyotypes in cancer cells. Cross-species analysis revealed that recurrent patterns of copy number variations, including 21q loss and dysregulation of the interferon pathway, are major drivers of metastatic potential. In vitro and in vivo genomic engineering, leveraging loss-of-function studies, along with a model of partial trisomy of chromosome 21q, demonstrated a dosage-dependent effect of the interferon receptor genes cluster as an adaptive mechanism to deleterious chromosomal instability in metastatic progression. This work provides critical knowledge on drivers of renal cell carcinoma progression and defines the primary role of interferon signaling in constraining the propagation of aneuploid clones in cancer evolution.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Variações do Número de Cópias de DNA/genética , Instabilidade Cromossômica/genética , Aneuploidia , Neoplasias Renais/genética
17.
Cancer Cell ; 41(6): 1032-1047.e4, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37311413

RESUMO

Multiple myeloma remains an incurable disease, and the cellular and molecular evolution from precursor conditions, including monoclonal gammopathy of undetermined significance and smoldering multiple myeloma, is incompletely understood. Here, we combine single-cell RNA and B cell receptor sequencing from fifty-two patients with myeloma precursors in comparison with myeloma and normal donors. Our comprehensive analysis reveals early genomic drivers of malignant transformation, distinct transcriptional features, and divergent clonal expansion in hyperdiploid versus non-hyperdiploid samples. Additionally, we observe intra-patient heterogeneity with potential therapeutic implications and identify distinct patterns of evolution from myeloma precursor disease to myeloma. We also demonstrate distinctive characteristics of the microenvironment associated with specific genomic changes in myeloma cells. These findings add to our knowledge about myeloma precursor disease progression, providing valuable insights into patient risk stratification, biomarker discovery, and possible clinical applications.


Assuntos
Pesquisa Biomédica , Mieloma Múltiplo , Mieloma Múltiplo Latente , Humanos , Mieloma Múltiplo/genética , Aneuploidia , Progressão da Doença , Microambiente Tumoral/genética
18.
Cancer Immunol Res ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163233

RESUMO

Comprehensive investigation of CD8+ T cells in acute myeloid leukemia (AML) is essential for developing immunotherapeutic strategies beyond immune checkpoint blockade. Herein, we performed single-cell RNA profiling of CD8+ T cells from 3 healthy bone marrow donors and 23 newly diagnosed (NewlyDx) and 8 relapsed/refractory (RelRef) AML patients. Cells co-expressing canonical exhaustion markers formed a cluster constituting <1% of all CD8+ T cells. We identified two effector CD8+ T cell subsets characterized by distinct cytokine and metabolic profiles that were differentially enriched in NewlyDx and RelRef patients. We refined a 25-gene CD8-derived signature correlating with therapy resistance, including genes associated with activation, chemoresistance, and terminal differentiation. Pseudotemporal trajectory analysis supported enrichment of a terminally differentiated state in CD8+ T cells with high CD8-derived signature expression at relapse or refractory disease. Higher expression of the 25-gene CD8 AML signature correlated with poorer outcomes in previously untreated AML patients, suggesting that the bona fide state of CD8+ T cells and their degree of differentiation are clinically relevant. Immune clonotype tracking revealed more phenotypic transitions in CD8 clonotypes in NewlyDx than in RelRef patients. Furthermore, CD8+ T cells from RelRef patients had a higher degree of clonal hyperexpansion associated with terminal differentiation and higher CD8-derived signature expression. Clonotype-derived antigen prediction revealed that most previously unreported clonotypes were patient-specific, suggesting significant heterogeneity in AML immunogenicity. Thus, immunologic reconstitution in AML is likely to be most successful at earlier disease stages when CD8+ T cells are less differentiated and have greater capacity for clonotype transitions.

19.
Nat Med ; 29(6): 1550-1562, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248301

RESUMO

Tumor-infiltrating T cells offer a promising avenue for cancer treatment, yet their states remain to be fully characterized. Here we present a single-cell atlas of T cells from 308,048 transcriptomes across 16 cancer types, uncovering previously undescribed T cell states and heterogeneous subpopulations of follicular helper, regulatory and proliferative T cells. We identified a unique stress response state, TSTR, characterized by heat shock gene expression. TSTR cells are detectable in situ in the tumor microenvironment across various cancer types, mostly within lymphocyte aggregates or potential tertiary lymphoid structures in tumor beds or surrounding tumor edges. T cell states/compositions correlated with genomic, pathological and clinical features in 375 patients from 23 cohorts, including 171 patients who received immune checkpoint blockade therapy. We also found significantly upregulated heat shock gene expression in intratumoral CD4/CD8+ cells following immune checkpoint blockade treatment, particularly in nonresponsive tumors, suggesting a potential role of TSTR cells in immunotherapy resistance. Our well-annotated T cell reference maps, web portal and automatic alignment/annotation tool could provide valuable resources for T cell therapy optimization and biomarker discovery.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos do Interstício Tumoral , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia , Microambiente Tumoral
20.
Nat Cell Biol ; 25(5): 765-777, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37095322

RESUMO

PBRM1 encodes an accessory subunit of the PBAF SWI/SNF chromatin remodeller, and the inactivation of PBRM1 is a frequent event in kidney cancer. However, the impact of PBRM1 loss on chromatin remodelling is not well examined. Here we show that, in VHL-deficient renal tumours, PBRM1 deficiency results in ectopic PBAF complexes that localize to de novo genomic loci, activating the pro-tumourigenic NF-κB pathway. PBRM1-deficient PBAF complexes retain the association between SMARCA4 and ARID2, but have loosely tethered BRD7. The PBAF complexes redistribute from promoter proximal regions to distal enhancers containing NF-κB motifs, heightening NF-κB activity in PBRM1-deficient models and clinical samples. The ATPase function of SMARCA4 maintains chromatin occupancy of pre-existing and newly acquired RELA specific to PBRM1 loss, activating downstream target gene expression. Proteasome inhibitor bortezomib abrogates RELA occupancy, suppresses NF-κB activation and delays growth of PBRM1-deficient tumours. In conclusion, PBRM1 safeguards the chromatin by repressing aberrant liberation of pro-tumourigenic NF-κB target genes by residual PBRM1-deficient PBAF complexes.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Genômica , Neoplasias Renais/metabolismo , NF-kappa B/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA