Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4395, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388659

RESUMO

Self-assembling peptides (SAPs) have gained significant attention in biomedicine because of their unique properties and ability to undergo molecular self-assembly driven by non-covalent interactions. By manipulating their composition and structure, SAPs can form well-ordered nanostructures with enhanced selectivity, stability and biocompatibility. SAPs offer advantages such as high chemical and biological diversity and the potential for functionalization. However, studies concerning its potentially toxic effects are very scarce, a limitation that compromises its potential translation to humans. This study investigates the potentially toxic effects of six different SAP formulations composed of natural amino acids designed for nervous tissue engineering and amenable to ready cross-linking boosting their biomechanical properties. All methods were performed in accordance with the relevant guidelines and regulations. A wound-healing assay was performed to evaluate how SAPs modify cell migration. The results in vitro demonstrated that SAPs did not induce genotoxicity neither skin sensitization. In vivo, SAPs were well-tolerated without any signs of acute systemic toxicity. Interestingly, SAPs were found to promote the migration of endothelial, macrophage, fibroblast, and neuronal-like cells in vitro, supporting a high potential for tissue regeneration. These findings contribute to the development and translation of SAP-based biomaterials for biomedical applications.


Assuntos
Nanoestruturas , Peptídeos , Humanos , Peptídeos/química , Engenharia Tecidual/métodos , Neurônios , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Nanoestruturas/química
2.
Front Immunol ; 15: 1289303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352878

RESUMO

Immunotherapy treatments aim to modulate the host's immune response to either mitigate it in inflammatory/autoimmune disease or enhance it against infection or cancer. Among different immunotherapies reaching clinical application during the last years, chimeric antigen receptor (CAR) immunotherapy has emerged as an effective treatment for cancer where different CAR T cells have already been approved. Yet their use against infectious diseases is an area still relatively poorly explored, albeit with tremendous potential for research and clinical application. Infectious diseases represent a global health challenge, with the escalating threat of antimicrobial resistance underscoring the need for alternative therapeutic approaches. This review aims to systematically evaluate the current applications of CAR immunotherapy in infectious diseases and discuss its potential for future applications. Notably, CAR cell therapies, initially developed for cancer treatment, are gaining recognition as potential remedies for infectious diseases. The review sheds light on significant progress in CAR T cell therapy directed at viral and opportunistic fungal infections.


Assuntos
Doenças Transmissíveis , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Doenças Transmissíveis/terapia , Doenças Transmissíveis/imunologia , Animais , Linfócitos T/imunologia , Linfócitos T/transplante
3.
Cancers (Basel) ; 15(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672279

RESUMO

(1) Despite the effectiveness of immune checkpoint inhibitors (ICIs) in lung cancer, there is a lack of knowledge about predictive biomarkers. The objective of our study is to analyze different subsets of T-lymphocytes and natural killer (NK) cells as predictive biomarkers in a cohort of patients with nonsmall cell lung cancer (NSCLC) treated with ICI. (2) This is an observational, prospective study with 55 NSCLC patients treated with ICI. A total of 43 T and NK cell subsets are analyzed in peripheral blood, including the main markers of exhaustion, differentiation, memory, activation, and inhibition. (3) Regarding the descriptive data, Granzyme B+CD4+ Treg lymphocytes stand out (median 17.4%), and within the NK populations, most patients presented cytotoxic NK cells (CD56+CD3-CD16+GranzymeB+; median 94.8%), and about half of them have highly differentiated adaptive-like NK cells (CD56+CD3-CD16+CD57+ (mean 59.8%). A statistically significant difference was observed between the expression of PD1 within the CD56bright NK cell subpopulation (CD56+CD3-CD16-PD-1+) (p = 0.047) and a better OS. (4) Circulating immune cell subpopulations are promising prognostic biomarkers for ICI. Pending on validation with a larger sample, here we provide an analysis of the major circulating T and NK cell subsets involved in cancer immunity, with promising results despite a small sample size.

4.
Angew Chem Int Ed Engl ; 62(8): e202216142, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36562327

RESUMO

Cytotoxic immune cells, including T lymphocytes (CTLs) and natural killer (NK) cells, are essential components of the host response against tumors. CTLs and NK cells secrete granzyme A (GzmA) upon recognition of cancer cells; however, there are very few tools that can detect physiological levels of active GzmA with high spatiotemporal resolution. Herein, we report the rational design of the near-infrared fluorogenic substrates for human GzmA and mouse GzmA. These activity-based probes display very high catalytic efficiency and selectivity over other granzymes, as shown in tissue lysates from wild-type and GzmA knock-out mice. Furthermore, we demonstrate that the probes can image how adaptive immune cells respond to antigen-driven recognition of cancer cells in real time.


Assuntos
Corantes Fluorescentes , Linfócitos T Citotóxicos , Animais , Humanos , Camundongos , Granzimas , Células Matadoras Naturais , Camundongos Knockout
5.
Angew Chem Weinheim Bergstr Ger ; 135(8): e202216142, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38515764

RESUMO

Cytotoxic immune cells, including T lymphocytes (CTLs) and natural killer (NK) cells, are essential components of the host response against tumors. CTLs and NK cells secrete granzyme A (GzmA) upon recognition of cancer cells; however, there are very few tools that can detect physiological levels of active GzmA with high spatiotemporal resolution. Herein, we report the rational design of the near-infrared fluorogenic substrates for human GzmA and mouse GzmA. These activity-based probes display very high catalytic efficiency and selectivity over other granzymes, as shown in tissue lysates from wild-type and GzmA knock-out mice. Furthermore, we demonstrate that the probes can image how adaptive immune cells respond to antigen-driven recognition of cancer cells in real time.

6.
Oncoimmunology ; 11(1): 2096359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813574

RESUMO

The contribution of the T cell-related inhibitory checkpoint PD-1 to the regulation of NK cell activity is still not clear with contradictory results concerning its expression and role in the modulation of NK cell cytotoxicity. We provide novel key findings on the mechanism involved in the regulation of PD-1 expression on NK cell membrane and its functional consequences for the elimination of cancer cells. In contrast to freshly isolated NK cells from cancer patients, those from healthy donors did not express PD-1 on the cell membrane. However, when healthy NK cells were incubated with tumor target cells, membrane PD-1 expression increased, concurrent with the CD107a surface mobilization. This finding suggested that PD-1 was translocated to the cell membrane during NK cell degranulation after contact with target cells. Indeed, cytosolic PD-1 was expressed in freshly-isolated-NK cells and partly co-localized with CD107a and GzmB, confirming that membrane PD-1 corresponded to a pool of preformed PD-1. Moreover, NK cells that had mobilized PD-1 to the cell membrane presented a significantly reduced anti-tumor activity on PD-L1-expressing-tumor cells in vitro and in vivo, which was partly reversed by using anti-PD-1 blocking antibodies. Our results indicate that NK cells from healthy individuals express cytotoxic granule-associated PD-1, which is rapidly mobilized to the cell membrane after interaction with tumor target cells. This novel finding helps to understand how PD-1 expression is regulated on NK cell membrane and the functional consequences of this expression during the elimination of tumor cells, which will help to design more efficient NK cell-based cancer immunotherapies.


Assuntos
Antineoplásicos , Neoplasias , Membrana Celular/metabolismo , Humanos , Imunoterapia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária
7.
Front Immunol ; 13: 896228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651603

RESUMO

NK cells are key mediators of immune cell-mediated cytotoxicity toward infected and transformed cells, being one of the main executors of cell death in the immune system. NK cells recognize target cells through an array of inhibitory and activating receptors for endogenous or exogenous pathogen-derived ligands, which together with adhesion molecules form a structure known as immunological synapse that regulates NK cell effector functions. The main and best characterized mechanisms involved in NK cell-mediated cytotoxicity are the granule exocytosis pathway (perforin/granzymes) and the expression of death ligands. These pathways are recognized as activators of different cell death programmes on the target cells leading to their destruction. However, most studies analyzing these pathways have used pure recombinant or native proteins instead of intact NK cells and, thus, extrapolation of the results to NK cell-mediated cell death might be difficult. Specially, since the activation of granule exocytosis and/or death ligands during NK cell-mediated elimination of target cells might be influenced by the stimulus received from target cells and other microenvironment components, which might affect the cell death pathways activated on target cells. Here we will review and discuss the available experimental evidence on how NK cells kill target cells, with a special focus on the different cell death modalities that have been found to be activated during NK cell-mediated cytotoxicity; including apoptosis and more inflammatory pathways like necroptosis and pyroptosis. In light of this new evidence, we will develop the new concept of cell death induced by NK cells as a new regulatory mechanism linking innate immune response with the activation of tumour adaptive T cell responses, which might be the initiating stimulus that trigger the cancer-immunity cycle. The use of the different cell death pathways and the modulation of the tumour cell molecular machinery regulating them might affect not only tumour cell elimination by NK cells but, in addition, the generation of T cell responses against the tumour that would contribute to efficient tumour elimination and generate cancer immune memory preventing potential recurrences.


Assuntos
Células Matadoras Naturais , Neoplasias , Imunidade Adaptativa , Citotoxicidade Imunológica , Humanos , Ligantes , Microambiente Tumoral
8.
Front Immunol ; 13: 890836, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747143

RESUMO

Background: Colorectal cancer (CRC) is a heterogeneous disease with variable mutational profile and tumour microenvironment composition that influence tumour progression and response to treatment. While chemoresistant and poorly immunogenic CRC remains a challenge, the development of new strategies guided by biomarkers could help stratify and treat patients. Allogeneic NK cell transfer emerges as an alternative against chemoresistant and poorly immunogenic CRC. Methods: NK cell-related immunological markers were analysed by transcriptomics and immunohistochemistry in human CRC samples and correlated with tumour progression and overall survival. The anti-tumour ability of expanded allogeneic NK cells using a protocol combining cytokines and feeder cells was analysed in vitro and in vivo and correlated with CRC mutational status and the expression of ligands for immune checkpoint (IC) receptors regulating NK cell activity. Results: HLA-I downmodulation and NK cell infiltration correlated with better overall survival in patients with a low-stage (II) microsatellite instability-high (MSI-H) CRC, suggesting a role of HLA-I as a prognosis biomarker and a potential benefit of NK cell immunotherapy. Activated allogeneic NK cells were able to eliminate CRC cultures without PD-1 and TIM-3 restriction but were affected by HLA-I expression. In vivo experiments confirmed the efficacy of the therapy against both HLA+ and HLA- CRC cell lines. Concomitant administration of pembrolizumab failed to improve tumour control. Conclusions: Our results reveal an immunological profile of CRC tumours in which immunogenicity (MSI-H) and immune evasion mechanisms (HLA downmodulation) favour NK cell immunosurveillance at early disease stages. Accordingly, we have shown that allogeneic NK cell therapy can target tumours expressing mutations conferring poor prognosis regardless of the expression of T cell-related inhibitory IC ligands. Overall, this study provides a rationale for a new potential basis for CRC stratification and NK cell-based therapy.


Assuntos
Neoplasias Colorretais , Instabilidade de Microssatélites , Neoplasias Colorretais/patologia , Humanos , Imunoterapia/métodos , Células Matadoras Naturais , Ligantes , Microambiente Tumoral
9.
Theranostics ; 11(20): 9873-9883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815792

RESUMO

Aims: Recent in vitro findings suggest that the serine protease Granzyme K (GzmK) may act as a proinflammatory mediator. However, its role in sepsis is unknown. Here we aim to understand the role of GzmK in a mouse model of bacterial sepsis and compare it to the biological relevance of Granzyme A (GzmA). Methods: Sepsis was induced in WT, GzmA-/- and GzmK-/- mice by an intraperitoneal injection of 2x108 CFU from E. coli. Mouse survival was monitored during 5 days. Levels of IL-1α, IL-1ß, TNFα and IL-6 in plasma were measured and bacterial load in blood, liver and spleen was analyzed. Finally, profile of cellular expression of GzmA and GzmK was analyzed by FACS. Results: GzmA and GzmK are not involved in the control of bacterial infection. However, GzmA and GzmK deficient mice showed a lower sepsis score in comparison with WT mice, although only GzmA deficient mice exhibited increased survival. GzmA deficient mice also showed reduced expression of some proinflammatory cytokines like IL1-α, IL-ß and IL-6. A similar result was found when extracellular GzmA was therapeutically inhibited in WT mice using serpinb6b, which improved survival and reduced IL-6 expression. Mechanistically, active extracellular GzmA induces the production of IL-6 in macrophages by a mechanism dependent on TLR4 and MyD88. Conclusions: These results suggest that although both proteases contribute to the clinical signs of E. coli-induced sepsis, inhibition of GzmA is sufficient to reduce inflammation and improve survival irrespectively of the presence of other inflammatory granzymes, like GzmK.


Assuntos
Granzimas/metabolismo , Sepse/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Escherichia coli/patogenicidade , Infecções por Escherichia coli/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sepse/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Theranostics ; 11(8): 3781-3795, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664861

RESUMO

Aims: Peritonitis is one of the most common causes of sepsis, a serious syndrome characterized by a dysregulated systemic inflammatory response. Recent evidence suggests that Granzyme A (GzmA), a serine protease mainly expressed by NK and T cells, could act as a proinflammatory mediator and could play an important role in the pathogenesis of sepsis. This work aims to analyze the role and the therapeutic potential of GzmA in the pathogenesis of peritoneal sepsis. Methods: The level of extracellular GzmA as well as GzmA activity were analyzed in serum from healthy volunteers and patients with confirmed peritonitis and were correlated with the Sequential Organ Failure Assessment (SOFA) score. Peritonitis was induced in C57Bl/6 (WT) and GzmA-/- mice by cecal ligation and puncture (CLP). Mice were treated intraperitoneally with antibiotics alone or in combination serpinb6b, a specific GzmA inhibitor, for 5 days. Mouse survival was monitored during 14 days, levels of some proinflammatory cytokines were measured in serum and bacterial load and diversity was analyzed in blood and spleen at different times. Results: Clinically, elevated GzmA was observed in serum from patients with abdominal sepsis suggesting that GzmA plays an important role in this pathology. In the CLP model GzmA deficient mice, or WT mice treated with an extracellular GzmA inhibitor, showed increased survival, which correlated with a reduction in proinflammatory markers in both serum and peritoneal lavage fluid. GzmA deficiency did not influence bacterial load in blood and spleen and GzmA did not affect bacterial replication in macrophages in vitro, indicating that GzmA has no role in bacterial control. Analysis of GzmA in lymphoid cells following CLP showed that it was mainly expressed by NK cells. Mechanistically, we found that extracellular active GzmA acts as a proinflammatory mediator in macrophages by inducing the TLR4-dependent expression of IL-6 and TNFα. Conclusions: Our findings implicate GzmA as a key regulator of the inflammatory response during abdominal sepsis and provide solid evidences about its therapeutic potential for the treatment of this severe pathology.


Assuntos
Granzimas/antagonistas & inibidores , Peritonite/tratamento farmacológico , Peritonite/enzimologia , Sepse/tratamento farmacológico , Sepse/enzimologia , Idoso , Idoso de 80 Anos ou mais , Animais , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Granzimas/sangue , Granzimas/deficiência , Granzimas/genética , Humanos , Mediadores da Inflamação/sangue , Interleucina-6/biossíntese , Células Matadoras Naturais/enzimologia , Macrófagos/enzimologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Peritonite/etiologia , Medicina de Precisão , Sepse/etiologia , Serpinas/farmacologia , Receptor 4 Toll-Like/metabolismo
11.
Infect Immun ; 89(9): e0066520, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-33526567

RESUMO

Immunotherapy has become a new paradigm in oncology, improving outcomes for several types of cancer. However, there are some aspects about its management that remain uncertain. One of the key points that needs better understanding is the interaction between immunotherapy and gut microbiome and how modulation of the microbiome might modify the efficacy of immunotherapy. Consequently, the negative impact of systemic antibiotics and corticosteroids on the efficacy of immunotherapy needs to be clarified.


Assuntos
Corticosteroides/farmacologia , Antibacterianos/farmacologia , Interações entre Hospedeiro e Microrganismos , Inibidores de Checkpoint Imunológico/uso terapêutico , Microbiota , Neoplasias/tratamento farmacológico , Probióticos , Corticosteroides/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunomodulação/efeitos dos fármacos , Interações Microbianas/efeitos dos fármacos , Interações Microbianas/imunologia , Microbiota/efeitos dos fármacos , Neoplasias/etiologia , Resultado do Tratamento
12.
Front Oncol ; 10: 568939, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117698

RESUMO

The advances in molecular biology and the emergence of Next Generation Sequencing (NGS) have revealed that microbiome composition is closely related with health and disease, including cancer. This relationship affects different levels of cancer such as development, progression, and response to treatment including immunotherapy. The efficacy of immune checkpoint inhibitors (ICIs) may be influenced by the concomitant use of antibiotics before, during or shortly after treatment with ICIs. Nevertheless, the linking mechanism between microbiote, host immunity and cancer is not clear and the role of microbiota manipulation and analyses in cancer management has not been clinically validated yet. Regarding the use of microbiome as biomarker to predict ICI efficacy it has been recently shown that the use of biochemical serum markers to monitor intestinal permeability and loss of barrier integrity, like citrulline, could be useful to monitor microbiota changes and predict ICI efficacy. There are still many unknowns about the role of these components, their relationship with the microbiota, with the use of antibiotics and the response to immunotherapy. The next challenge in microbiome research will be to identify individual microbial species that causally affect lung cancer phenotypes and response to ICI and disentangle the underlying mechanisms. Thus, further analyses in patients with lung cancer receiving treatment with ICIs and its correlation with the composition of the microbiota in different organs including the respiratory tract, peripheral blood and intestinal tract could be useful to predict the efficacy of ICIs and its modulation with antibiotic use.

13.
Cancers (Basel) ; 12(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066479

RESUMO

Despite therapeutic advances, lung cancer (LC) is one of the leading causes of cancer morbidity and mortality worldwide. Recently, the treatment of advanced LC has experienced important changes in survival benefit due to immune checkpoint inhibitors (ICIs). However, overall response rates (ORR) remain low in unselected patients and a large proportion of patients undergo disease progression in the first weeks of treatment. Therefore, there is a need of biomarkers to identify patients who will benefit from ICIs. The programmed cell death ligand 1 (PD-L1) expression has been the first biomarker developed. However, its use as a robust predictive biomarker has been limited due to the variability of techniques used, with different antibodies and thresholds. In this context, tumor mutational burden (TMB) has emerged as an additional powerful biomarker based on the observation of successful response to ICIs in solid tumors with high TMB. TMB can be defined as the total number of nonsynonymous mutations per DNA megabases being a mechanism generating neoantigens conditioning the tumor immunogenicity and response to ICIs. However, the latest data provide conflicting results regarding its role as a biomarker. Moreover, considering the results of the recent data, the use of peripheral blood T cell receptor (TCR) repertoire could be a new predictive biomarker. This review summarises recent findings describing the clinical utility of TMB and TCRß (TCRB) and concludes that immune, neontigen, and checkpoint targeted variables are required in combination for accurately identifying patients who most likely will benefit of ICIs.

14.
Cell Rep ; 32(1): 107847, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640217

RESUMO

If not properly regulated, the inflammatory immune response can promote carcinogenesis, as evident in colorectal cancer (CRC). Aiming to gain mechanistic insight into the link between inflammation and CRC, we perform transcriptomics analysis of human CRC, identifying a strong correlation between expression of the serine protease granzyme A (GzmA) and inflammation. In a dextran sodium sulfate and azoxymethane (DSS/AOM) mouse model, deficiency and pharmacological inhibition of extracellular GzmA both attenuate gut inflammation and prevent CRC development, including the initial steps of cell transformation and epithelial-to-mesenchymal transition. Mechanistically, extracellular GzmA induces NF-κB-dependent IL-6 production in macrophages, which in turn promotes STAT3 activation in cultured CRC cells. Accordingly, colon tissues from DSS/AOM-treated, GzmA-deficient animals present reduced levels of pSTAT3. By identifying GzmA as a proinflammatory protease that promotes CRC development, these findings provide information on mechanisms that link immune cell infiltration to cancer progression and present GzmA as a therapeutic target for CRC.


Assuntos
Carcinogênese/patologia , Colo/patologia , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Espaço Extracelular/enzimologia , Granzimas/metabolismo , Inflamação/patologia , Doença Aguda , Animais , Azoximetano , Carcinogênese/genética , Doença Crônica , Neoplasias Colorretais/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana , Progressão da Doença , Granzimas/antagonistas & inibidores , Granzimas/genética , Humanos , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-6/biossíntese , Camundongos Knockout , NF-kappa B/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Cells ; 9(6)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580514

RESUMO

The molecular and cell determinants that modulate immune checkpoint (ICI) efficacy in lung cancer are still not well understood. However, there is a necessity to select those patients that will most benefit from these new treatments. Recent studies suggest the presence and/or the relative balance of specific lymphoid cells in the tumor microenvironment (TEM) including the T cell (activated, memory, and regulatory) and NK cell (CD56dim/bright) subsets, and correlate with a better response to ICI. The analyses of these cell subsets in peripheral blood, as a more accessible and homogeneous sample, might facilitate clinical decisions concerning fast prediction of ICI efficacy. Despite recent studies suggesting that lymphoid circulating cells might correlate with ICI efficacy and toxicity, more analyses and investigation are required to confirm if circulating lymphoid cells are a relevant picture of the lung TME and could be instrumental as ICI response biomarkers. This short review is aimed to discuss the recent advances in this fast-growing field.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Linfócitos/imunologia , Biomarcadores Tumorais , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/patologia , Linfócitos/patologia , Microambiente Tumoral
16.
Trends Cancer ; 6(2): 86-97, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32061309

RESUMO

Microbiota have emerged as key modulators of both the carcinogenic process and the immune response against cancer cells, and, thus, it seems to influence the efficacy of immunotherapy. While most studies have focused on analyzing the influence of gut microbiota, its composition substantially differs from that in the lung. Here, we describe how microbial life in the lungs is associated with host immune status in the lungs and, thus, how the identification of the microbial populations in the lower respiratory tract rather than in the gut might be key to understanding the lung carcinogenic process and to predict the efficacy of different treatments. Understanding the influence of lung microbiota on host immunity may identify new therapeutic targets and help to design new immunotherapy approaches to treat lung cancer.


Assuntos
Carcinogênese/imunologia , Disbiose/complicações , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/microbiologia , Microbiota/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Antibacterianos/efeitos adversos , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/metabolismo , Carcinogênese/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Disbiose/imunologia , Disbiose/microbiologia , Disbiose/patologia , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade Inata/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Microbiota/efeitos dos fármacos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Intervalo Livre de Progressão , Mucosa Respiratória/imunologia , Mucosa Respiratória/microbiologia , Mucosa Respiratória/patologia
17.
Materials (Basel) ; 12(7)2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30987007

RESUMO

Gliotoxin (GT), a secondary metabolite produced by Aspergillus molds, has been proposed as a potential anti-tumor agent. Here we have developed a nanoparticle approach to enhance delivery of GT in tumor cells and establish a basis for its potential use as therapeutical drug. GT bound to magnetic nanoparticles (MNPs) retained a high anti-tumor activity, correlating with efficient intracellular delivery, which was increased in the presence of glucose. Our results show that the attachment of GT to MNPs by covalent bonding enhances intracellular GT delivery without affecting its biological activity. This finding represents the first step to use this potent anti-tumor agent in the treatment of cancer.

18.
Theranostics ; 8(14): 3856-3869, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083264

RESUMO

Monoclonal antibodies (mAbs) have significantly improved the treatment of certain cancers. However, in general mAbs alone have limited therapeutic activity. One of their main mechanisms of action is to induce antibody-dependent cell-mediated cytotoxicity (ADCC), which is mediated by natural killer (NK) cells. Unfortunately, most cancer patients have severe immune dysfunctions affecting NK activity. This can be circumvented by the injection of allogeneic, expanded NK cells, which is safe. Nevertheless, despite their strong cytolytic potential against different tumors, clinical results have been poor. Methods: We combined allogeneic NK cells and mAbs to improve cancer treatment. We generated expanded NK cells (e-NK) with strong in vitro and in vivo ADCC responses against different tumors and using different therapeutic mAbs, namely rituximab, obinutuzumab, daratumumab, cetuximab and trastuzumab. Results: Remarkably, e-NK cells can be stored frozen and, after thawing, armed with mAbs. They mediate ADCC through degranulation-dependent and -independent mechanisms. Furthermore, they overcome certain anti-apoptotic mechanisms found in leukemic cells. Conclusion: We have established a new protocol for activation/expansion of NK cells with high ADCC activity. The use of mAbs in combination with e-NK cells could potentially improve cancer treatment.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos Imunológicos/administração & dosagem , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Transplante Homólogo/métodos , Animais , Modelos Animais de Doenças , Humanos , Camundongos SCID , Resultado do Tratamento
19.
Part Fibre Toxicol ; 14(1): 41, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29073907

RESUMO

BACKGROUND: The special physicochemical properties of gold nanoprisms make them very useful for biomedical applications including biosensing and cancer therapy. However, it is not clear how gold nanoprisms may affect cellular physiology including viability and other critical functions. We report a multiparametric investigation on the impact of gold-nanoprisms on mice and human, transformed and primary cells as well as tissue distribution and toxicity in vivo after parental injection. METHODS: Cellular uptake of the gold-nanoprisms (NPRs) and the most crucial parameters of cell fitness such as generation of reactive oxygen species (ROS), mitochondria membrane potential, cell morphology and apoptosis were systematically assayed in cells. Organ distribution and toxicity including inflammatory response were analysed in vivo in mice at 3 days or 4 months after parental administration. RESULTS: Internalized gold-nanoprisms have a significant impact in cell morphology, mitochondrial function and ROS production, which however do not affect the potential of cells to proliferate and form colonies. In vivo NPRs were only detected in spleen and liver at 3 days and 4 months after administration, which correlated with some changes in tissue architecture. However, the main serum biochemical markers of organ damage and inflammation (TNFα and IFNγ) remained unaltered even after 4 months. In addition, animals did not show any macroscopic sign of toxicity and remained healthy during all the study period. CONCLUSION: Our data indicate that these gold-nanoprisms are neither cytotoxic nor cytostatic in transformed and primary cells, and suggest that extensive parameters should be analysed in different cell types to draw useful conclusions on nanomaterials safety. Moreover, although there is a tendency for the NPRs to accumulate in liver and spleen, there is no observable negative impact on animal health.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Células A549 , Animais , Linhagem Celular Transformada , Forma Celular/efeitos dos fármacos , Feminino , Ouro/administração & dosagem , Ouro/farmacocinética , Células HeLa , Humanos , Mediadores da Inflamação/sangue , Injeções Intravenosas , Interferon gama/sangue , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Distribuição Tecidual , Fator de Necrose Tumoral alfa/sangue
20.
Arthritis Rheumatol ; 69(2): 320-334, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27598995

RESUMO

OBJECTIVE: Granzyme A (GzmA) levels are elevated in the plasma and synovium of patients with rheumatoid arthritis (RA), suggesting involvement of this protease in the pathogenesis of the disease. GzmA contributes to sepsis by regulating the production of proinflammatory cytokines. The purpose of this study was to evaluate the contribution of GzmA to the pathogenesis of RA in vivo and to examine the possibility that GzmA acting via tumor necrosis factor (TNF) stimulates osteoclastogenesis. METHODS: Inflammatory arthritis induced by type II collagen was evaluated in wild-type, GzmA-deficient, and perforin-deficient mice. The osteoclastogenic potential of GzmA was examined in vitro using bone marrow cells and colony-forming unit-granulocyte-macrophage (CFU-GM) cells and in vivo using GzmA-deficient mice. RESULTS: Gene deletion of GzmA attenuated collagen-induced arthritis, including serum levels of proinflammatory cytokines, joint damage, and bone erosion in affected mice, suggesting that osteoclast activity is reduced in the absence of GzmA. Accordingly, GzmA-treated bone marrow cells produced multinucleated cells that fulfilled the criteria for mature osteoclasts: tartrate-resistant acid phosphatase (TRAP) activity, ß integrin expression, calcitonin receptor expression, and resorptive activity on dentin slices. GzmA appeared to act without accessory cells, and its activity was not affected by osteoprotegerin, suggesting a minor contribution of RANKL. It also induced the expression and secretion of TNF. Neutralization of TNF or stimulation of CFU-GM cells from TNF-/- mice prevented GzmA-induced osteoclastogenesis. GzmA-deficient mice had reduced osteoclastogenesis in vivo (fewer calcitonin receptor-positive multinucleated cells and fewer transcripts for cathepsin K, matrix metalloproteinase 9, and TRAP in joints) and reduced serum levels of C-terminal telopeptide of type I collagen. CONCLUSION: GzmA contributes to the joint destruction of RA partly by promoting osteoclast differentiation.


Assuntos
Artrite Experimental/enzimologia , Artrite Experimental/etiologia , Artrite Reumatoide/enzimologia , Artrite Reumatoide/etiologia , Granzimas/fisiologia , Osteogênese/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA