Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 289: 115056, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35104576

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lepidium virginicum L. (Brassicaceae) is a plant widely used in traditional Mexican medicine as an expectorant, diuretic, and as a remedy to treat diarrhea and dysentery, infection-derived gastroenteritis. However, there is no scientific study that validates its clinical use as an anti-inflammatory in the intestine. AIM OF THE STUDY: This study aimed to investigate the anti-inflammatory properties of the ethanolic extract of Lepidium virginicum L. (ELv) in an animal model of inflammatory bowel disease (IBD)-like colitis. MATERIALS AND METHODS: The 2,4-dinitrobenzene sulfonic acid (DNBS) animal model of IBD was used. Colitis was induced by intrarectal instillation of 200 mg/kg of DNBS dissolved vehicle, 50% ethanol. Control rats only received the vehicle. Six hours posterior to DNBS administration, ELv (3, 30, or 100 mg/kg) was administered daily by gavage or intraperitoneal injection. The onset and course of the inflammatory response were monitored by assessing weight loss, stool consistency, and fecal blood. Colonic damage was evaluated by colon weight/length ratio, histopathology, colonic myeloperoxidase (MPO) activity, and gene expression of proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1ß), chemokine C-X-C motif ligand 1 (CXCL-1), and interleukin-6 (IL-6). RESULTS: Rats treated with DNBS displayed significant weight loss, diarrhea, fecal blood, colon shortening, a significant increase in immune cell infiltration and MPO activity, as well as increased proinflammatory cytokine expression. Intraperitoneal administration of ELv significantly reduced colon inflammation, whereas oral treatment proved to be ineffective. In fact, intraperitoneal ELv significantly attenuated the clinical manifestations of colitis, immune cell infiltration, MPO activity, and pro-inflammatory (CXCL-1, TNF-α, and IL-1ß) gene expression in a dose-dependent manner. CONCLUSION: Traditional medicine has employed ELv as a remedy for common infection-derived gastrointestinal symptoms; however, we hereby present the first published study validating its anti-inflammatory properties in the mitigation of DNBS-induced colitis.


Assuntos
Anti-Inflamatórios/farmacologia , Colite/tratamento farmacológico , Lepidium/química , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Colite/genética , Colite/fisiopatologia , Dinitrofluorbenzeno/análogos & derivados , Relação Dose-Resposta a Droga , Etanol/química , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/fisiopatologia , Medicina Tradicional , Extratos Vegetais/administração & dosagem , Ratos , Ratos Wistar
2.
Mol Biol Rep ; 48(2): 1633-1644, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33606149

RESUMO

Expansin and extensin are proteins involved in resistance to various abiotic stresses by processes of cell wall modification and in the formation and elongation of the hairy root. They are located in several organs of the plant included root epidermis. Turbinicarpus lophophoroides is a cactus model to studies these genes in adventitious and transformed roots. In this study, we identified and characterized the expansin7, expansin18 and extensin10 genes in T. lophophoroides. Bioinformatic analysis indicated that the expansin sequences contained the motifs: HTFYG, HFD, YRR, VPC and YW; and certain conserved cysteine (C) residues. Regarding extensin10, the sequence contains the conserved SPPPP (SP4), YYS and YV motifs. The expression analysis in adventitious and transformed roots under osmotic stress (300 mM mannitol), heat (37 °C) and cold (4 °C); shows a higher expression of TlExpA18 in both roots, a decrease in TlExpA7 in transformed roots and a null expression in TlExt10 in both roots. In addition, a morphological comparison of the maturation/differentiation zone, meristem and cap between adventitious and transformed roots by SEM was performed, finding differences in the quantity and length of the hairy roots and the shape of the root cap. Overall, the study concluded that TlExpA18 and TlExpA7 belong to expansin family and TlExt10 belong to extensin family. The expression characteristics of TlExpA18, TlExpA7 and TlExt10 will facilitate the investigation of its function in stress response and other physiological processes in T. lophophoroides.


Assuntos
Cactaceae/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Estresse Fisiológico/genética , Proteínas de Arabidopsis/genética , Cactaceae/crescimento & desenvolvimento , Parede Celular/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA