Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38397403

RESUMO

BACKGROUND: Frailty is a geriatric syndrome associated with negative health outcomes that represents a dynamic condition with a potential of reversibility after physical exercise interventions. Typically, inflammatory and senescence markers are increased in frail individuals. However, the impact that physical exercise exerts on inflammatory and senescence biomarkers remains unknown. We assessed the effect of physical intervention in old individuals and mice and determined the expression of inflammatory and senescence markers. METHODS: Twelve elderly individuals were enrolled from a primary care setting to a 3-month intervention. Frailty was measured by SPPB and the expression of biomarkers by cytokine array and RT-qPCR. In addition, 12 aged C57BL/6 mice completed an intervention, and inflammation and senescence markers were studied. RESULTS: The physical intervention improved the SPPB score, reducing frail and pre-frail individuals. This was correlated with a reduction in several pro-inflammatory biomarkers such as IL-6, CXCL-1, CXCL-10, IL-1ß, IL-7, GM-CSF as well as p16INK4a and p21CIP1 senescence markers. Otherwise, the levels of anti-inflammatory biomarker IL-4 were significantly increased. Moreover, the physical intervention in mice also improved their functional capacity and restored the expression of inflammatory (Il-1ß, Cxcl-10, Il-6, and Cxcl-1) and senescence (p21Cip1) markers. Additionally, PLSDA and ROC curve analysis revealed CXCL-10 and IL-1ß to be the biomarkers of functional improvement in both cohorts. CONCLUSIONS: Our results showed that a physical intervention improves physical frailty, and reverses inflammation and senescence biomarkers comprising CXCL-10 and IL-1ß.


Assuntos
Fragilidade , Idoso , Animais , Humanos , Camundongos , Biomarcadores/metabolismo , Idoso Fragilizado , Fragilidade/metabolismo , Fragilidade/terapia , Inflamação , Interleucina-6 , Camundongos Endogâmicos C57BL
2.
Free Radic Biol Med ; 193(Pt 2): 538-550, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36347404

RESUMO

BACKGROUND: Increasing evidence indicates that redox stress participates in MFS aortopathy, though its mechanistic contribution is little known. We reported elevated reactive oxygen species (ROS) formation and NADPH oxidase NOX4 upregulation in MFS patients and mouse aortae. Here we address the contribution of xanthine oxidoreductase (XOR), which catabolizes purines into uric acid and ROS in MFS aortopathy. METHODS AND RESULTS: In aortic samples from MFS patients, XOR protein expression, revealed by immunohistochemistry, increased in both the tunicae intima and media of the dilated zone. In MFS mice (Fbn1C1041G/+), aortic XOR mRNA transcripts and enzymatic activity of the oxidase form (XO) were augmented in the aorta of 3-month-old mice but not in older animals. The administration of the XOR inhibitor allopurinol (ALO) halted the progression of aortic root aneurysm in MFS mice. ALO administrated before the onset of the aneurysm prevented its subsequent development. ALO also inhibited MFS-associated endothelial dysfunction as well as elastic fiber fragmentation, nuclear translocation of pNRF2 and increased 3'-nitrotyrosine levels, and collagen maturation remodeling, all occurring in the tunica media. ALO reduced the MFS-associated large aortic production of H2O2, and NOX4 and MMP2 transcriptional overexpression. CONCLUSIONS: Allopurinol interferes in aortic aneurysm progression acting as a potent antioxidant. This study strengthens the concept that redox stress is an important determinant of aortic aneurysm formation and progression in MFS and warrants the evaluation of ALO therapy in MFS patients.


Assuntos
Aneurisma Aórtico , Síndrome de Marfan , Camundongos , Animais , Síndrome de Marfan/metabolismo , Alopurinol/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Aneurisma Aórtico/tratamento farmacológico , Aneurisma Aórtico/genética , Aneurisma Aórtico/prevenção & controle , Aorta/metabolismo , Modelos Animais de Doenças , Estresse Oxidativo , Oxirredução
3.
Science ; 374(6565): 355-359, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34648328

RESUMO

Regeneration of skeletal muscle is a highly synchronized process that requires muscle stem cells (satellite cells). We found that localized injuries, as experienced through exercise, activate a myofiber self-repair mechanism that is independent of satellite cells in mice and humans. Mouse muscle injury triggers a signaling cascade involving calcium, Cdc42, and phosphokinase C that attracts myonuclei to the damaged site via microtubules and dynein. These nuclear movements accelerate sarcomere repair and locally deliver messenger RNA (mRNA) for cellular reconstruction. Myofiber self-repair is a cell-autonomous protective mechanism and represents an alternative model for understanding the restoration of muscle architecture in health and disease.


Assuntos
Núcleo Celular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Regeneração , Sarcômeros/fisiologia , Animais , Cálcio/metabolismo , Dineínas/metabolismo , Camundongos , Microtúbulos/metabolismo , Contração Muscular , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/ultraestrutura , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo
4.
J Cachexia Sarcopenia Muscle ; 12(6): 1879-1896, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34704386

RESUMO

BACKGROUND: Frailty is a major age-associated syndrome leading to disability. Oxidative damage plays a significant role in the promotion of frailty. The cellular antioxidant system relies on reduced nicotinamide adenine dinucleotide phosphate (NADPH) that is highly dependent on glucose 6-P dehydrogenase (G6PD). The G6PD-overexpressing mouse (G6PD-Tg) is protected against metabolic stresses. Our aim was to examine whether this protection delays frailty. METHODS: Old wild-type (WT) and G6PD-Tg mice were evaluated longitudinally in terms of frailty. Indirect calorimetry, transcriptomic profile, and different skeletal muscle quality markers and muscle regenerative capacity were also investigated. RESULTS: The percentage of frail mice was significantly lower in the G6PD-Tg than in the WT genotype, especially in 26-month-old mice where 50% of the WT were frail vs. only 13% of the Tg ones (P < 0.001). Skeletal muscle transcriptomic analysis showed an up-regulation of respiratory chain and oxidative phosphorylation (P = 0.009) as well as glutathione metabolism (P = 0.035) pathways in the G6PD-Tg mice. Accordingly, the Tg animals exhibited an increase in reduced glutathione (34.5%, P < 0.01) and a decrease on its oxidized form (-69%, P < 0.05) and in lipid peroxidation (4-HNE: -20.5%, P < 0.05). The G6PD-Tg mice also showed reduced apoptosis (BAX/Bcl2: -25.5%, P < 0.05; and Bcl-xL: -20.5%, P < 0.05), lower levels of the intramuscular adipocyte marker FABP4 (-54.7%, P < 0.05), and increased markers of mitochondrial content (COX IV: 89.7%, P < 0.05; Grp75: 37.8%, P < 0.05) and mitochondrial OXPHOS complexes (CII: 81.25%, P < 0.01; CIII: 52.5%, P < 0.01; and CV: 37.2%, P < 0.05). Energy expenditure (-4.29%, P < 0.001) and the respiratory exchange ratio were lower (-13.4%, P < 0.0001) while the locomotor activity was higher (43.4%, P < 0.0001) in the 20-month-old Tg, indicating a major energetic advantage in these mice. Short-term exercise training in young C57BL76J mice induced a robust activation of G6PD in skeletal muscle (203.4%, P < 0.05), similar to that achieved in the G6PD-Tg mice (142.3%, P < 0.01). CONCLUSIONS: Glucose 6-P dehydrogenase deficiency can be an underestimated risk factor for several human pathologies and even frailty. By overexpressing G6PD, we provide the first molecular model of robustness. Because G6PD is regulated by pharmacological and physiological interventions like exercise, our results provide molecular bases for interventions that by increasing G6PD will delay the onset of frailty.


Assuntos
Fragilidade , Glucosefosfato Desidrogenase , Animais , Glucose , Glucose 1-Desidrogenase , Glucosefosfato Desidrogenase/genética , Camundongos , Músculos
5.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502180

RESUMO

Leukocyte cell recruitment into the vascular subendothelium constitutes an early event in the atherogenic process. As the effect of the constitutive androstane receptor (CAR) on leukocyte recruitment and endothelial dysfunction is poorly understood, this study investigated whether the role of CAR activation can affect this response and the underlying mechanisms involved. Under physiological flow conditions, TNFα-induced endothelial adhesion of human leukocyte cells was concentration-dependently inhibited by preincubation of human umbilical arterial endothelial cells with the selective human CAR ligand CITCO. CAR agonism also prevented TNFα induced VCAM-1 expression, as well as MCP-1/CCL-2 and RANTES/CCL-5 release in endothelial cells. Suppression of CAR expression with a small interfering RNA abrogated the inhibitory effects of CITCO on these responses. Furthermore, CITCO increased interaction of CAR with Retinoid X Receptor (RXR) and reduced TNFα-induced p38-MAPK/NF-κB activation. In vivo, using intravital microscopy in the mouse cremasteric microcirculation treatment with the selective mouse CAR ligand TCPOBOP inhibited TNFα-induced leukocyte rolling flux, adhesion, and emigration and decreased VCAM-1 in endothelium. These results reveal that CAR agonists can inhibit the initial inflammatory response that precedes the atherogenic process by targeting different steps in the leukocyte recruitment cascade. Therefore, CAR agonists may constitute a new therapeutic tool in controlling cardiovascular disease-associated inflammatory processes.


Assuntos
Adesão Celular , Células Endoteliais , Leucócitos/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Receptor Constitutivo de Androstano , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Leucócitos/metabolismo , Leucócitos/fisiologia , Masculino , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética
6.
Nat Chem Biol ; 16(7): 731-739, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32393898

RESUMO

Glucose is catabolized by two fundamental pathways, glycolysis to make ATP and the oxidative pentose phosphate pathway to make reduced nicotinamide adenine dinucleotide phosphate (NADPH). The first step of the oxidative pentose phosphate pathway is catalyzed by the enzyme glucose-6-phosphate dehydrogenase (G6PD). Here we develop metabolite reporter and deuterium tracer assays to monitor cellular G6PD activity. Using these, we show that the most widely cited G6PD antagonist, dehydroepiandosterone, does not robustly inhibit G6PD in cells. We then identify a small molecule (G6PDi-1) that more effectively inhibits G6PD. Across a range of cultured cells, G6PDi-1 depletes NADPH most strongly in lymphocytes. In T cells but not macrophages, G6PDi-1 markedly decreases inflammatory cytokine production. In neutrophils, it suppresses respiratory burst. Thus, we provide a cell-active small molecule tool for oxidative pentose phosphate pathway inhibition, and use it to identify G6PD as a pharmacological target for modulating immune response.


Assuntos
Inibidores Enzimáticos/farmacologia , Glucosefosfato Desidrogenase/antagonistas & inibidores , Linfócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Via de Pentose Fosfato/efeitos dos fármacos , Animais , Linhagem Celular , Desidroepiandrosterona/farmacologia , Relação Dose-Resposta a Droga , Ensaios Enzimáticos , Glucose/metabolismo , Glucosefosfato Desidrogenase/imunologia , Glucosefosfato Desidrogenase/metabolismo , Glicólise/imunologia , Células HCT116 , Células Hep G2 , Humanos , Imunidade Inata , Ativação Linfocitária/efeitos dos fármacos , Linfócitos/citologia , Linfócitos/enzimologia , Linfócitos/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/enzimologia , Macrófagos/imunologia , NADP/antagonistas & inibidores , NADP/metabolismo , Neutrófilos/citologia , Neutrófilos/enzimologia , Neutrófilos/imunologia , Via de Pentose Fosfato/imunologia
7.
Front Physiol ; 11: 71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116779

RESUMO

Understanding the molecular pathways involved in the loss of skeletal muscle mass and function induced by muscle disuse is a crucial issue in the context of spaceflight as well as in the clinical field, and development of efficient countermeasures is needed. Recent studies have reported the importance of redox balance dysregulation as a major mechanism leading to muscle wasting. Our study aimed to evaluate the effects of an antioxidant/anti-inflammatory cocktail (741 mg of polyphenols, 138 mg of vitamin E, 80 µg of selenium, and 2.1 g of omega-3) in the prevention of muscle deconditioning induced by long-term inactivity. The study consisted of 60 days of hypoactivity using the head-down bed rest (HDBR) model. Twenty healthy men were recruited; half of them received a daily antioxidant/anti-inflammatory supplementation, whereas the other half received a placebo. Muscle biopsies were collected from the vastus lateralis muscles before and after bedrest and 10 days after remobilization. After 2 months of HDBR, all subjects presented muscle deconditioning characterized by a loss of muscle strength and an atrophy of muscle fibers, which was not prevented by cocktail supplementation. Our results regarding muscle oxidative damage, mitochondrial content, and protein balance actors refuted the potential protection of the cocktail during long-term inactivity and showed a disturbance of essential signaling pathways (protein balance and mitochondriogenesis) during the remobilization period. This study demonstrated the ineffectiveness of our cocktail supplementation and underlines the complexity of redox balance mechanisms. It raises interrogations regarding the appropriate nutritional intervention to fight against muscle deconditioning.

8.
Sports Med Health Sci ; 2(2): 55-64, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34189484

RESUMO

The SARS-CoV-2-caused COVID-19 pandemic has resulted in a devastating threat to human society in terms of health, economy, and lifestyle. Although the virus usually first invades and infects the lung and respiratory track tissue, in extreme cases, almost all major organs in the body are now known to be negatively impacted often leading to severe systemic failure in some people. Unfortunately, there is currently no effective treatment for this disease. Pre-existing pathological conditions or comorbidities such as age are a major reason for premature death and increased morbidity and mortality. The immobilization due to hospitalization and bed rest and the physical inactivity due to sustained quarantine and social distancing can downregulate the ability of organs systems to resist to viral infection and increase the risk of damage to the immune, respiratory, cardiovascular, musculoskeletal systems and the brain. The cellular mechanisms and danger of this "second wave" effect of COVID-19 to the human body, along with the effects of aging, proper nutrition, and regular physical activity, are reviewed in this article.

9.
Cancers (Basel) ; 11(3)2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823492

RESUMO

Cachexia is a debilitating syndrome that complicates the management of cancer patients. Muscle wasting, one of the main features of cachexia, is associated with hyper-activation of protein degradative pathways and altered mitochondrial function that could both result from impaired redox homeostasis. This study aimed to investigate the contribution of oxidative stress to cancer-induced cachexia in the presence or in the absence of moderate exercise training. Mice bearing the colon C26 carcinoma, either sedentary or exercised, were used. The former showed muscle wasting and redox imbalance, with the activation of an antioxidant response and with upregulation of markers of proteasome-dependent protein degradation and autophagy. Moderate exercise was able to relieve muscle wasting and prevented the loss of muscle strength; such a pattern was associated with reduced levels of Reactive Oxygen Species (ROS), carbonylated proteins and markers of autophagy and with improved antioxidant capacity. The muscle of sedentary tumor hosts also showed increased levels of molecular markers of mitophagy and reduced mitochondrial mass. Conversely, exercise in the C26 hosts led to increased mitochondrial mass. In conclusion, moderate exercise could be an effective non-pharmacological approach to prevent muscle wasting in cancer patients, decreasing muscle protein catabolism and oxidative stress and preserving mitochondria.

10.
Sci Rep ; 8(1): 3549, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476130

RESUMO

Disuse muscle wasting will likely affect everyone in his or her lifetime in response to pathologies such as joint immobilization, inactivity or bed rest. There are no good therapies to treat it. We previously found that allopurinol, a drug widely used to treat gout, protects muscle damage after exhaustive exercise and results in functional gains in old individuals. Thus, we decided to test its effect in the prevention of soleus muscle atrophy after two weeks of hindlimb unloading in mice, and lower leg immobilization following ankle sprain in humans (EudraCT: 2011-003541-17). Our results show that allopurinol partially protects against muscle atrophy in both mice and humans. The protective effect of allopurinol is similar to that of resistance exercise which is the best-known way to prevent muscle mass loss in disuse human models. We report that allopurinol protects against the loss of muscle mass by inhibiting the expression of ubiquitin ligases. Our results suggest that the ubiquitin-proteasome pathway is an appropriate therapeutic target to inhibit muscle wasting and emphasizes the role of allopurinol as a non-hormonal intervention to treat disuse muscle atrophy.


Assuntos
Alopurinol/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Transtornos Musculares Atróficos/tratamento farmacológico , Animais , Traumatismos do Tornozelo/tratamento farmacológico , Traumatismos do Tornozelo/fisiopatologia , Elevação dos Membros Posteriores , Humanos , Camundongos , Músculo Esquelético/fisiopatologia , Atrofia Muscular/fisiopatologia , Transtornos Musculares Atróficos/fisiopatologia , Condicionamento Físico Animal , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Ubiquitina/genética
11.
Nat Commun ; 7: 10894, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26976705

RESUMO

Reactive oxygen species (ROS) are constantly generated by cells and ROS-derived damage contributes to ageing. Protection against oxidative damage largely relies on the reductive power of NAPDH, whose levels are mostly determined by the enzyme glucose-6-phosphate dehydrogenase (G6PD). Here, we report a transgenic mouse model with moderate overexpression of human G6PD under its endogenous promoter. Importantly, G6PD-Tg mice have higher levels of NADPH, lower levels of ROS-derived damage, and better protection from ageing-associated functional decline, including extended median lifespan in females. The G6PD transgene has no effect on tumour development, even after combining with various tumour-prone genetic alterations. We conclude that a modest increase in G6PD activity is beneficial for healthspan through increased NADPH levels and protection from the deleterious effects of ROS.


Assuntos
Envelhecimento/genética , Glucosefosfato Desidrogenase/genética , Longevidade/genética , NADP/metabolismo , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos
13.
Free Radic Biol Med ; 86: 37-46, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25889822

RESUMO

Physical exercise increases the cellular production of reactive oxygen species (ROS) in muscle, liver, and other organs. This is unlikely due to increased mitochondrial production but rather to extramitochondrial sources such as NADPH oxidase or xanthine oxidase. We have reported a xanthine oxidase-mediated increase in ROS production in many experimental models from isolated cells to humans. Originally, ROS were considered as detrimental and thus as a likely cause of cell damage associated with exhaustion. In the past decade, evidence showing that ROS act as signals has been gathered and thus the idea that antioxidant supplementation in exercise is always recommendable has proved incorrect. In fact, we proposed that exercise itself can be considered as an antioxidant because training increases the expression of classical antioxidant enzymes such as superoxide dismutase and glutathione peroxidase and, in general, lowering the endogenous antioxidant enzymes by administration of antioxidant supplements may not be a good strategy when training. Antioxidant enzymes are not the only ones to be activated by training. Mitochondriogenesis is an important process activated in exercise. Many redox-sensitive enzymes are involved in this process. Important signaling molecules like MAP kinases, NF-κB, PGC-1α, p53, heat shock factor, and others modulate muscle adaptation to exercise. Interventions aimed at modifying the production of ROS in exercise must be performed with care as they may be detrimental in that they may lower useful adaptations to exercise.


Assuntos
Antioxidantes/farmacologia , Exercício Físico/fisiologia , Mitocôndrias Musculares/fisiologia , Adaptação Fisiológica , Animais , Suplementos Nutricionais , Humanos , Músculo Esquelético/fisiologia , Biogênese de Organelas , Oxirredução , Estresse Oxidativo
14.
Rev Esp Geriatr Gerontol ; 49(6): 292-8, 2014.
Artigo em Espanhol | MEDLINE | ID: mdl-25131431

RESUMO

Xanthine oxidase (XO) is an enzyme that catalyzes the oxidation of hypoxanthine to xanthine and uric acid and plays an important role in purine catabolism. The purine analogue, allopurinol, is a well-known inhibitor of XO widely used in the clinical management of gout and conditions associated with hyperuricemia. More recent data indicate that allopurinol reduces oxidative stress and improves vascular function in several cardiometabolic diseases, prolongs exercise time in angina, and improves the efficiency of cardiac contractility in heart failure. XO also plays an important role in free radical generation during skeletal muscle contraction and thus, it has been related to the muscle damage associated to exhaustive exercise. Several research groups have shown the protective effect of allopurinol in the prevention of this type of damage. Based on this background, a critical overview is presented on the possible role of allopurinol in the treatment of sarcopenia, a geriatric syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes, such as physical disability, poor quality of life and death.


Assuntos
Alopurinol/uso terapêutico , Sequestradores de Radicais Livres/uso terapêutico , Sarcopenia/tratamento farmacológico , Idoso , Humanos , Sarcopenia/enzimologia , Xantina Oxidase/fisiologia
15.
Free Radic Biol Med ; 73: 166-73, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24858720

RESUMO

Reactive oxygen species (ROS) are important signaling molecules with regulatory functions, and in young and adult organisms, the formation of ROS is increased during skeletal muscle contractions. However, ROS can be deleterious to cells when not sufficiently counterbalanced by the antioxidant system. Aging is associated with accumulation of oxidative damage to lipids, DNA, and proteins. Given the pro-oxidant effect of skeletal muscle contractions, this effect of age could be a result of excessive ROS formation. We evaluated the effect of acute exercise on changes in blood redox state across the leg of young (23 ± 1 years) and older (66 ± 2 years) sedentary humans by measuring the whole blood concentration of the reduced (GSH) and oxidized (GSSG) forms of the antioxidant glutathione. To assess the role of physical activity, lifelong physically active older subjects (62 ± 2 years) were included. Exercise increased the venous concentration of GSSG in an intensity-dependent manner in young sedentary subjects, suggesting an exercise-induced increase in ROS formation. In contrast, venous GSSG levels remained unaltered during exercise in the older sedentary and active groups despite a higher skeletal muscle expression of the superoxide-generating enzyme NADPH oxidase. Arterial concentration of GSH and expression of antioxidant enzymes in skeletal muscle of older active subjects were increased. The potential impairment in exercise-induced ROS formation may be an important mechanism underlying skeletal muscle and vascular dysfunction with sedentary aging. Lifelong physical activity upregulates antioxidant systems, which may be one of the mechanisms underlying the lack of exercise-induced increase in GSSG.


Assuntos
Exercício Físico/fisiologia , Glutationa/sangue , Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Comportamento Sedentário , Adulto , Idoso , Envelhecimento , Antioxidantes/análise , Catalase/biossíntese , Glutationa Peroxidase/biossíntese , Humanos , Perna (Membro)/fisiologia , Peroxidação de Lipídeos , Masculino , Pessoa de Meia-Idade , Contração Muscular/fisiologia , NADPH Oxidases/biossíntese , Oxirredução , Estresse Oxidativo , Fosfoproteínas/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/biossíntese , Superóxido Dismutase-1 , Adulto Jovem , Glutationa Peroxidase GPX1
16.
Clin Lab ; 59(1-2): 207-10, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505929

RESUMO

BACKGROUND: Although physical exercise acutely increases the most widely used inflammatory biomarkers, there is no information on its effect on soluble urokinase plasminogen activating receptor (suPAR), a circulating biomarker increasingly used for the assessment of systemic inflammation. METHODS: suPAR was assessed with the quantitative suPARnostic Standard ELISA Assay (Virogates, Birkerød, Denmark) in 12 professional football players before and after a football match. The athletes were divided into two experimental groups. An oral dose of 300 mg of allopurinol was administered to one group of six participants four hours before a match; the other six participants received placebo. RESULTS: Serum suPAR concentration did not vary significantly after the match in both the placebo and allopurinol group. No significant differences were observed between placebo and allopurinol groups at baseline and after the game. CONCLUSIONS: At variance with other consolidated inflammatory biomarkers, suPAR is not influenced by either physical exercise or administration of xanthine oxidase inhibitors.


Assuntos
Alopurinol/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Exercício Físico , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Adulto , Ensaio de Imunoadsorção Enzimática , Humanos , Masculino , Placebos
17.
Transl Res ; 162(2): 102-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23507375

RESUMO

Several sports have been associated with a postexercise increase of cardiac, liver, and skeletal muscle biomarkers of injury. Exhaustive or acute physical exercise causes an increased generation of reactive oxygen species, resulting in cellular injury. Thus, exercise and training may trigger pathophysiological changes in serum concentrations of a variety of biomarkers. In this study, we aimed to evaluate the variation of novel biomarkers of stress and cardiovascular disease such as copeptin, midregional part of proadrenomedullin (MR-proADM), growth differentiation factor 15 (GDF15), soluble vascular endothelial growth factor receptor, and placental growth factor along with uric acid before and after acute high-intensity exercise and allopurinol administration. We also assessed whether allopurinol administration may affect the circulating levels of these biomarkers by inhibition of XO activity. This is a double-blind, placebo-controlled study in which 12 professional football players were divided into 2 experimental groups. An oral dose of 300 mg of allopurinol was administered to one group of six participants 4 hours before a match of the Spanish Football League, whereas the other 6 participants received placebo (cellulose). Venous blood samples were obtained before the match (baseline) and twelve hours afterwards (post-match). Serum MR-proADM levels increased significantly in the placebo group, whereas serum GDF15 levels increased significantly in both the placebo and allopurinol group after the match. No differences in the other parameters tested were found after the match in any experimental group. The trend toward postexercise increase of serum MR-proADM and GDF15 levels shows that the metabolism of these proteins is clearly imbalanced after exercise, which thereby represents a potential source of biological variability in their clinical assessment.


Assuntos
Alopurinol/farmacologia , Biomarcadores/sangue , Inibidores Enzimáticos/farmacologia , Exercício Físico/fisiologia , Miocárdio/metabolismo , Xantina Oxidase/antagonistas & inibidores , Administração Oral , Adrenomedulina/sangue , Adulto , Atletas , Método Duplo-Cego , Glicopeptídeos/sangue , Fator 15 de Diferenciação de Crescimento/sangue , Humanos , Masculino , Fragmentos de Peptídeos/sangue , Fator de Crescimento Placentário , Proteínas da Gravidez/sangue , Precursores de Proteínas/sangue , Futebol , Ácido Úrico/sangue , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue
18.
PLoS One ; 7(10): e46668, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071610

RESUMO

Alterations in muscle play an important role in common diseases and conditions. Reactive oxygen species (ROS) are generated during hindlimb unloading due, at least in part, to the activation of xanthine oxidase (XO). The major aim of this study was to determine the mechanism by which XO activation causes unloading-induced muscle atrophy in rats, and its possible prevention by allopurinol, a well-known inhibitor of this enzyme. For this purpose we studied one of the main redox sensitive signalling cascades involved in skeletal muscle atrophy i.e. p38 MAPKinase, and the expression of two well known muscle specific E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFbx; also known as atrogin-1) and Muscle RING (Really Interesting New Gene) Finger-1 (MuRF-1). We found that hindlimb unloading induced a significant increase in XO activity and in the protein expression of the antioxidant enzymes CuZnSOD and Catalase in skeletal muscle. The most relevant new fact reported in this paper is that inhibition of XO with allopurinol, a drug widely used in clinical practice, prevents soleus muscle atrophy by ~20% after hindlimb unloading. This was associated with the inhibition of the p38 MAPK-MAFbx pathway. Our data suggest that XO was involved in the loss of muscle mass via the activation of the p38MAPK-MAFbx pathway in unloaded muscle atrophy. Thus, allopurinol may have clinical benefits to combat skeletal muscle atrophy in bedridden, astronauts, sarcopenic, and cachexic patients.


Assuntos
Alopurinol/administração & dosagem , Proteínas Musculares/metabolismo , Atrofia Muscular/prevenção & controle , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Xantina Oxidase/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Ativação Enzimática , Elevação dos Membros Posteriores , Masculino , Proteínas Musculares/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Músculo Esquelético/fisiopatologia , Estresse Oxidativo , Ratos , Ratos Wistar , Proteínas Ligases SKP Culina F-Box/fisiologia , Superóxido Dismutase/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/fisiologia , Xantina Oxidase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
J Physiol Biochem ; 68(4): 593-601, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22627788

RESUMO

The blood O(2)-carrying capacity is maintained by the O(2)-regulated production of erythropoietin (Epo), which stimulates the proliferation and survival of red blood cell progenitors. Epo has been thought to act exclusively on erythroid progenitor cells. However, recent studies have identified the erythropoietin receptor (EpoR) in other cells, such as neurons, astrocytes, microglia, heart, cancer cell lines, and skeletal muscle provides evidence for a potential role of Epo in other tissues. In this study we aimed to determine the effect of recombinant human erythropoietin (rHuEpo) on skeletal muscle adaptations such as mitochondrial biogenesis, myogenesis, and angiogenesis in different muscle fibre types. Fourteen male Wistar rats were randomly divided into two experimental groups, and saline or rHuEpo (300 IU) was administered subcutaneously three times a week for 3 weeks. We evaluated the protein expression of intermediates involved in the mitochondrial biogenesis cascade, the myogenic cascade, and in angiogenesis in the oxidative soleus muscle and in the glycolytic gastrocnemius muscle. Contrary to our expectations, rHuEpo significantly hampered the mitochondrial biogenesis pathway in gastrocnemius muscle (PGC-1α, mTFA and cytochrome c). We did not find any effect of the treatment on cellular signals of myogenesis (MyoD and Myf5) or angiogenesis (VEGF) in either soleus or gastrocnemius muscles. Finally, we found no significant effect on the maximal aerobic velocity at the end of the experiment in the rHuEpo-treated animals. Our findings suggest that 3 weeks of rHuEpo treatment, which generates an increase of oxygen carrying capacity, can affect mitochondrial biogenesis in a muscle fibre-specific dependent manner.


Assuntos
Eritropoetina/administração & dosagem , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/efeitos dos fármacos , Animais , Citocromos c/metabolismo , Tolerância ao Exercício/efeitos dos fármacos , Hemoglobinas/metabolismo , Humanos , Masculino , Desenvolvimento Muscular , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Fator 1 Relacionado a NF-E2/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes/administração & dosagem , Reticulócitos/citologia , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
J Strength Cond Res ; 26(12): 3469-72, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22561977

RESUMO

Physical exercise positively influences epigenetic mechanisms and improves health. Several issues remain unclear concerning the links between physical exercise and epigenetics. There is growing concern about the negative influence of excessive and persistent physical exercise on health. How an individual physically adapts to the prevailing environmental conditions might influence epigenetic mechanisms and modulate gene expression. In this article, we put forward the idea that physical exercise, especially long-term repetitive strenuous exercise, positively affects health, reduces the aging process, and decreases the incidence of cancer through induced stress and epigenetic mechanisms. We propose herein that stress may stimulate genetic adaptations through epigenetics that, in turn, modulate the link between the environment, human lifestyle factors, and genes.


Assuntos
Adaptação Fisiológica/fisiologia , Epigênese Genética/fisiologia , Exercício Físico/fisiologia , Neoplasias/genética , Neoplasias/prevenção & controle , Envelhecimento/fisiologia , Humanos , Estilo de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA