Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Expert Opin Drug Metab Toxicol ; 9(12): 1571-80, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23984653

RESUMO

INTRODUCTION: Monocytes and their cell derivatives can participate in drug metabolism. These cells express different Phase-I or -II drug metabolizing enzymes and can be differentiated into neo-hepatocytes (NeoHep) and represent a promising alternative strategy to test drug metabolism. This is particularly useful as primary human hepatocytes (PHH), are difficult to obtain and maintain in culture. AREAS COVERED: The authors analyze the use of blood monocytes and their derivatives for the study of drug metabolism. They also compare them to the in vitro ability of cells from different sources including: PHH, immortalized hepatocytes, tumor cell lines and NeoHep. EXPERT OPINION: The use of monocytes, macrophages, dendritic or Kupffer cells, to test drug metabolism, has serious limitations because these cells express lower levels of cytochrome P450 enzymes than PHH. The best available option, to replace PHH, have been tumor cell lines such as HepaRG, as well as immortalized hepatocytes from adult or fetal sources. Monocyte-derived NeoHep cells are novel and easily accessible cells, which express many drug metabolizing enzymes at levels comparable to PHH. These cells allow drug evaluation under a diverse genetic background. While these cells are in the early stages of evaluation and do need to be examined more thoroughly, they constitute a promising new tool for in vitro drug testing.


Assuntos
Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Inativação Metabólica , Monócitos/citologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/citologia , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo
2.
ScientificWorldJournal ; 9: 746-63, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19705036

RESUMO

Interaction in vitro between cells infected with human immunodeficiency virus (HIV) and surrounding, uninfected, target cells often leads to cell fusion and the formation of multinucleated cells, called syncytia. The presence in HIV-infected individuals of virus strains able to induce syncytia in cultures of T cells is associated with disease progression and AIDS. Even in the asymptomatic stage of infection, multinucleated cells have been observed in different organs, indicating that fused cells may be generated and remain viable in the tissues of patients. We used lymphocytic cells transfected for the expression of the HIV-envelope (Env) glycoproteins to develop a method for the direct quantification of fusion events by flow cytometry (Huerta et al., 2006, J. Virol. Methods 138, 17-23; López-Balderas et al., 2007, Virus Res. 123, 138-146). The method involves the staining of fusion partners with lipophilic probes and the use of fluorescence resonance energy transfer (FRET) to distinguish between fused and aggregated cells. We have shown that such a flow-cytometry assay is appropriate for the screening of compounds that have the potential to modulate HIV-Env-mediated cell fusion. Even those syncytia that are small or few in numbers can be detected. Quantitative analysis of the fusion products was performed with this technique; the results indicated that the time of reaction and initial proportion of fusion partners determine the number, relative size, and average cellular composition of syncytia. Heterogeneity of syncytia generated by HIV-Env-mediated cell-cell fusion may result in a variety of possible outcomes that, in turn, may influence the biological properties of the syncytia and surrounding cells, as well as replication of virus. Given the myriad immune abnormalities leading to AIDS, the full understanding of the extent, diverse composition, and role of fused cells in the pathogenesis of, and immune response to, HIV infection is an important, pending issue.


Assuntos
Fusão Celular , HIV/fisiologia , Proteínas do Envelope Viral/fisiologia , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA