Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protist ; 171(2): 125713, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32325416

RESUMO

In many marine littoral and sublittoral benthic habitats, we find small diatoms with few features resolvable with light microscopy (LM) other than internal costae across their valves. While classically those internal costae have defined their identification and classification, the use of electron microscopy and of molecular data have started to reveal the true diversity of unrelated forms and genera (e.g., Anaulus, Eunotogramma, Hustedtiella, or Plagiogramma) which possess these structures. Here we describe the new genus Ambo, in an attempt to clarify some of the polyphyly of taxa with internal costa by formally transferring Anaulus balticus, Anaulus simonsenii, and Plagiogramma tenuissimum as well as Ambo gallaeciae, described here. Related to this, we attempt to document and characterize the genus Anaulus itself, which was formally described by Ehrenberg with an illustration. A search by LM of mica designated by Ehrenberg as the holotype of Anaulus scalaris, the generitype of Anaulus, failed to recover a specimen which adequately describes the genus to the exclusion of other genera with internal costa. We also present morphological and molecular data for Anaulus creticus and suggest a new genus-Ceratanaulus-to reflect the distinct morphological and molecular characters we documented.


Assuntos
Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Biodiversidade , Diatomáceas/classificação , Diatomáceas/genética , Filogenia , Especificidade da Espécie
2.
ACS Appl Mater Interfaces ; 9(3): 2796-2805, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28029248

RESUMO

Hybrid materials consisting of a monoolein lipidic cubic phase (LCP) incorporating two types of magnetic nanoparticles (NP) were designed as addressable drug delivery systems. The materials, prepared in the form of a gel, were subsequently used as a macroscopic layer modifying an electrode and, after dispersion to nanoscale, as magnetocubosomes. These two LCPs were characterized by small-angle X-ray scattering (SAXS), cross-polarized microscopy, magnetic measurements, and phase diagrams. The magnetic dopants were hydrophobic NPoleic and hydrophilic NPcitric, characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and their influence on the properties of the cubic phases was investigated. The removal of the anticancer drug, Doxorubicin (Dox) from the hybrid cubic phase gels was studied by electrochemical methods. The advantages of incorporating magnetic nanoparticles into the self-assembled lipid liquid crystalline phases include the ability to address the cubic phase nanoparticle containing large amounts of drug and to control the kinetics of the drug release.


Assuntos
Nanopartículas de Magnetita , Liberação Controlada de Fármacos , Géis , Glicerídeos , Espalhamento a Baixo Ângulo , Difração de Raios X
3.
Langmuir ; 31(46): 12753-61, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26513537

RESUMO

Lyotropic liquid crystalline systems are excellent carriers for drugs due to their biocompatibility, stability in aqueous environment, and well-defined structure that allow them to host significantly larger amounts of drugs than carriers such as liposomes or gold nanoparticles. Incorporating the drug within the mesophase gel, or the cubosome/hexosome nanoparticles, decreased its toxic effects toward healthy cells, while appropriate mechanisms can stimulate the release of the drug from the carrier when it approaches the cancerous cell environment. Electrochemical methods-chronocoulometry and voltammetry at micro and normal size electrodes-are used for the first time to simultaneously determine the diffusion coefficients and effective concentrations of a toxic anticancer drug, doxorubicin, in the channels of three liquid-crystalline lipidic cubic phases. This approach was instrumental in demonstrating that the drug diffusion and kinetics of release from the mesophases depend on the aqueous channel size, which in turn is related to the identity and structure of the amphiphilic molecules used for the formation of the mesophase. Structural parameters of the cubic phases with the incorporated drug were characterized by small-angle X-ray scattering (SAXS), and molecular dynamics simulations were applied in order to describe the differences in the distribution of doxorubicin in the cubic phase matrix at acidic and neutral pH. The release of the drug from the phase was retarded at physiological pH, while at lower pH, corresponding to the cancer environment, it was accelerated, provided that suitable amphiphilic molecules were employed for the construction of the liquid crystal drug delivery system.


Assuntos
Portadores de Fármacos/química , Cristais Líquidos/química , Preparações de Ação Retardada , Difusão , Doxorrubicina/química , Eletroquímica , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Água/química
4.
Chemistry ; 18(8): 2235-8, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22281602

RESUMO

Let's get charged! Positively charged nanoparticles (NPs) spontaneously self-assemble into hexagonally close-packed lattices at a planar CH(2)Cl(2)-water interface. The self-assembly process is fully autonomous and occurs without any external manipulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA