RESUMO
Myoglobin (MB) is expressed in different cancer types and may act as a tumor suppressor in breast cancer. The mechanisms by which basal MB expression level impacts murine mammary tumorigenesis are unclear. We investigated how MB expression in breast cancer influences proliferation, metastasis, tumor hypoxia, and chemotherapy treatment in vivo. We crossed PyMT and WapCreTrp53flox mammary cancer mouse models that differed in tumor grade/type and onset of mammary carcinoma with MB knockout mice. The loss of MB in WapCre;Trp53flox mice did not affect tumor development and progression. On the other hand, loss of MB decreased tumor growth and increased tissue hypoxia as well as the number of lung metastases in PyMT mice. Furthermore, Doxorubicin therapy prevented the stronger metastatic propensity of MB-deficient tumors in PyMT mice. This suggests that, although MB expression predicts improved prognosis in breast cancer patients, MB-deficient tumors may still respond well to first-line therapies. We propose that determining the expression level of MB in malignant breast cancer biopsies will improve tumor stratification, outcome prediction, and personalized therapy in cancer patients.
Assuntos
Carcinoma , Mioglobina , Animais , Camundongos , Mioglobina/genética , Biópsia , Modelos Animais de Doenças , Hipóxia/genética , Camundongos KnockoutRESUMO
Objective: The pro-inflammatory cytokine interleukin-1ß (IL-1ß) plays a central role in host defense against infections. High systemic IL-1ß levels, however, promote the pathogenesis of inflammatory disorders. Therefore, mechanisms controlling IL-1ß release are of substantial clinical interest. Recently, we identified a cholinergic mechanism inhibiting the ATP-mediated IL-1ß release by human monocytes via nicotinic acetylcholine receptor (nAChR) subunits α7, α9 and/or α10. We also discovered novel nAChR agonists that trigger this inhibitory function in monocytic cells without eliciting ionotropic functions at conventional nAChRs. Here, we investigate the ion flux-independent signaling pathway that links nAChR activation to the inhibition of the ATP-sensitive P2X7 receptor (P2X7R). Methods: Different human and murine mononuclear phagocytes were primed with lipopolysaccharide and stimulated with the P2X7R agonist BzATP in the presence or absence of nAChR agonists, endothelial NO synthase (eNOS) inhibitors, and NO donors. IL-1ß was measured in cell culture supernatants. Patch-clamp and intracellular Ca2+ imaging experiments were performed on HEK cells overexpressing human P2X7R or P2X7R with point mutations at cysteine residues in the cytoplasmic C-terminal domain. Results: The inhibitory effect of nAChR agonists on the BzATP-induced IL-1ß release was reversed in the presence of eNOS inhibitors (L-NIO, L-NAME) as well as in U937 cells after silencing of eNOS expression. In peripheral blood mononuclear leukocytes from eNOS gene-deficient mice, the inhibitory effect of nAChR agonists was absent, suggesting that nAChRs signal via eNOS to inhibit the BzATP-induced IL-1ß release. Moreover, NO donors (SNAP, S-nitroso-N-acetyl-DL-penicillamine; SIN-1) inhibited the BzATP-induced IL-1ß release by mononuclear phagocytes. The BzATP-induced ionotropic activity of the P2X7R was abolished in the presence of SIN-1 in both, Xenopus laevis oocytes and HEK cells over-expressing the human P2X7R. This inhibitory effect of SIN-1 was absent in HEK cells expressing P2X7R, in which C377 was mutated to alanine, indicating the importance of C377 for the regulation of the P2X7R function by protein modification. Conclusion: We provide first evidence that ion flux-independent, metabotropic signaling of monocytic nAChRs involves eNOS activation and P2X7R modification, resulting in an inhibition of ATP signaling and ATP-mediated IL-1ß release. This signaling pathway might be an interesting target for the treatment of inflammatory disorders.
Assuntos
Leucócitos Mononucleares , Receptores Purinérgicos P2X7 , Humanos , Camundongos , Animais , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Monócitos/metabolismo , Trifosfato de Adenosina/metabolismo , Óxido Nítrico Sintase/metabolismoRESUMO
The translation of successful preclinical and clinical proof-of-concept studies on cardioprotection to the benefit of patients with reperfused acute myocardial infarction has been difficult so far. This difficulty has been attributed to confounders which patients with myocardial infarction typically have but experimental animals usually not have. The metabolic syndrome is a typical confounder. We hypothesised that there may also be a genuine non-responsiveness to cardioprotection and used Ossabaw minipigs which have the genetic predisposition to develop a diet-induced metabolic syndrome, but before they had developed the diseased phenotype. Using a prospective study design, a reperfused acute myocardial infarction was induced in 62 lean Ossabaw minipigs by 60 min coronary occlusion and 180 min reperfusion. Ischaemic preconditioning by 3 cycles of 5 min coronary occlusion and 10 min reperfusion was used as cardioprotective intervention. Ossabaw minipigs were stratified for their single nucleotide polymorphism as homozygous for valine (V/V) or isoleucine (I/I)) in the γ-subunit of adenosine monophosphate-activated protein kinase. Endpoints were infarct size and area of no-reflow. Infarct size (V/V: 54 ± 8, I/I: 54 ± 13% of area at risk, respectively) was not reduced by ischaemic preconditioning (V/V: 55 ± 11, I/I: 46 ± 11%) nor was the area of no-reflow (V/V: 57 ± 18, I/I: 49 ± 21 vs. V/V: 57 ± 21, I/I: 47 ± 21% of infarct size). Bioinformatic comparison of the Ossabaw genome to that of Sus scrofa and Göttingen minipigs identified differences in clusters of genes encoding mitochondrial and inflammatory proteins, including the janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. The phosphorylation of STAT3 at early reperfusion was not increased by ischaemic preconditioning, different from the established STAT3 activation by cardioprotective interventions in other pig strains. Ossabaw pigs have not only the genetic predisposition to develop a metabolic syndrome but also are not amenable to cardioprotection by ischaemic preconditioning.
RESUMO
BACKGROUND: Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) acts as a transcriptional coactivator and regulates mitochondrial function. Various isoforms are generated by alternative splicing and differentially regulated promoters. In the heart, total PGC-1α deficiency knockout leads to dilatative cardiomyopathy, but knowledge on the complexity of cardiac isoform expression of PGC-1α remains sparse. Thus, this study aims to generate a reliable dataset on cardiac isoform expression pattern by long-read mRNA sequencing, followed by investigation of differential regulation of PGC-1α isoforms under metabolic and ischemic stress, using high-fat-high-sucrose-diet-induced obesity and a murine model of myocardial infarction. RESULTS: Murine (C57Bl/6J) or human heart tissue (obtained during LVAD-surgery) was used for long-read mRNA sequencing, resulting in full-length transcriptomes including 58,000 mRNA isoforms with 99% sequence accuracy. Automatic bioinformatic analysis as well as manual similarity search against exonic sequences leads to identification of putative coding PGC-1α isoforms, validated by PCR and Sanger sequencing. Thereby, 12 novel transcripts generated by hitherto unknown splicing events were detected. In addition, we postulate a novel promoter with homologous and strongly conserved sequence in human heart. High-fat diet as well as ischemia/reperfusion (I/R) injury transiently reduced cardiac expression of PGC-1α isoforms, with the most pronounced effect in the infarcted area. Recovery of PGC-1α-isoform expression was even more decelerated when I/R was performed in diet-induced obese mice. CONCLUSIONS: We deciphered for the first time a complete full-length transcriptome of the murine and human heart, identifying novel putative PGC-1α coding transcripts including a novel promoter. These transcripts are differentially regulated in I/R and obesity suggesting transcriptional regulation and alternative splicing that may modulate PGC-1α function in the injured and metabolically challenged heart.
Assuntos
Isquemia Miocárdica , Transcriptoma , Processamento Alternativo , Animais , Humanos , Camundongos , Isquemia Miocárdica/genética , Obesidade/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Isoformas de Proteínas/genética , RNA Mensageiro/metabolismoRESUMO
Conditional, cell-type-specific transgenic mouse lines are of high value in cardiovascular research. A standard tool for cardiomyocyte-restricted DNA editing is the αMHC-MerCreMer/loxP system. However, there is an ongoing debate on the occurrence of cardiac side effects caused by unspecific Cre activity or related to tamoxifen/oil overload. Here, we investigated potential adverse effects of DNA editing by the αMHC-MerCreMer/loxP system in combination with a low-dose treatment protocol with the tamoxifen metabolite 4-hydroxytamoxifen (OH-Txf). αMHC-MerCreMer mice received intraperitoneally OH-Txf (20 mg/kg) for 5 or 10 days. These treatment protocols were highly efficient to induce DNA editing in adult mouse hearts. Multi-parametric magnetic resonance imaging revealed neither transient nor permanent effects on cardiac function during or up to 19 days after 5 day OH-Txf treatment. Furthermore, OH-Txf did not affect cardiac phosphocreatine/ATP ratios assessed by in vivo 31P MR spectroscopy, indicating no Cre-mediated side effects on cardiac energy status. No MRI-based indication for the development of cardiac fibrosis was found as mean T1 relaxation time was unchanged. Histological analysis of myocardial collagen III content after OH-Txf confirmed this result. Last, mean T2 relaxation time was not altered after Txf treatment suggesting no pronounced cardiac lipid accumulation or tissue oedema. In additional experiments, cardiac function was assessed for up to 42 days to investigate potential delayed side effects of OH-Txf treatment. Neither 5- nor 10-day treatment resulted in a depression of cardiac function. Efficient cardiomyocyte-restricted DNA editing that is free of unwanted side effects on cardiac function, energetics or fibrosis can be achieved in adult mice when the αMHC-MerCreMer/loxP system is activated by the tamoxifen metabolite OH-Txf.
Assuntos
Edição de Genes , Integrases/genética , Miócitos Cardíacos/efeitos dos fármacos , Tamoxifeno/análogos & derivados , Animais , Metabolismo Energético/efeitos dos fármacos , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cadeias Pesadas de Miosina/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tamoxifeno/farmacologia , Tamoxifeno/toxicidade , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Stress hyperglycemia and insulin resistance are evolutionarily conserved metabolic adaptations to severe injury including major trauma, burns, or hemorrhagic shock (HS). In response to injury, the neuroendocrine system increases secretion of counterregulatory hormones that promote rapid mobilization of nutrient stores, impair insulin action, and ultimately cause hyperglycemia, a condition known to impair recovery from injury in the clinical setting. We investigated the contributions of adipocyte lipolysis to the metabolic response to acute stress. Both surgical injury with HS and counterregulatory hormone (epinephrine) infusion profoundly stimulated adipocyte lipolysis and simultaneously triggered insulin resistance and hyperglycemia. When lipolysis was inhibited, the stress-induced insulin resistance and hyperglycemia were largely abolished demonstrating an essential requirement for adipocyte lipolysis in promoting stress-induced insulin resistance. Interestingly, circulating non-esterified fatty acid levels did not increase with lipolysis or correlate with insulin resistance during acute stress. Instead, we show that impaired insulin sensitivity correlated with circulating levels of the adipokine resistin in a lipolysis-dependent manner. Our findings demonstrate the central importance of adipocyte lipolysis in the metabolic response to injury. This insight suggests new approaches to prevent insulin resistance and stress hyperglycemia in trauma and surgery patients and thereby improve outcomes.
Assuntos
Adipócitos/metabolismo , Hiperglicemia/metabolismo , Lipólise/fisiologia , Choque Hemorrágico/complicações , Ferida Cirúrgica/complicações , Animais , Modelos Animais de Doenças , Epinefrina/administração & dosagem , Epinefrina/metabolismo , Feminino , Humanos , Hiperglicemia/sangue , Hiperglicemia/etiologia , Hiperglicemia/fisiopatologia , Insulina/metabolismo , Resistência à Insulina/fisiologia , Lipase/genética , Lipase/metabolismo , Masculino , Camundongos , Camundongos Knockout , Resistina/sangue , Resistina/metabolismo , Choque Hemorrágico/sangue , Choque Hemorrágico/metabolismo , Choque Hemorrágico/fisiopatologia , Ferida Cirúrgica/sangue , Ferida Cirúrgica/metabolismo , Ferida Cirúrgica/fisiopatologiaRESUMO
Nitric oxide (NO)-cyclic GMP (cGMP) signaling is a vasoprotective pathway therapeutically targeted, for example, in pulmonary hypertension. Its dysregulation in disease is incompletely understood. Here we show in pulmonary artery endothelial cells that feedback inhibition by NO of the NO receptor, the cGMP forming soluble guanylate cyclase (sGC), may contribute to this. Both endogenous NO from endothelial NO synthase and exogenous NO from NO donor compounds decreased sGC protein and activity. This effect was not mediated by cGMP as the NO-independent sGC stimulator, or direct activation of cGMP-dependent protein kinase did not mimic it. Thiol-sensitive mechanisms were also not involved as the thiol-reducing agent N-acetyl-L-cysteine did not prevent this feedback. Instead, both in-vitro and in-vivo and in health and acute respiratory lung disease, chronically elevated NO led to the inactivation and degradation of sGC while leaving the heme-free isoform, apo-sGC, intact or even increasing its levels. Thus, NO regulates sGC in a bimodal manner, acutely stimulating and chronically inhibiting, as part of self-limiting direct feedback that is cGMP independent. In high NO disease conditions, this is aggravated but can be functionally recovered in a mechanism-based manner by apo-sGC activators that re-establish cGMP formation.
Assuntos
Aorta Torácica/metabolismo , GMP Cíclico/metabolismo , Endotélio Vascular/metabolismo , Óxido Nítrico/metabolismo , Artéria Pulmonar/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Guanilato Ciclase/metabolismo , Masculino , Camundongos , Camundongos Knockout , Guanilil Ciclase Solúvel/metabolismo , SuínosRESUMO
Autophagy, apoptosis, and necroptosis are stress responses governing the ultimate fate of a cell. However, the crosstalk between these cellular stress responses is not entirely understood. Especially, it is not clear whether the autophagy-initiating kinase ULK1 and the cell-death-regulating kinase RIPK1 are involved in this potential crosstalk. Here, we identify RIPK1 as a substrate of ULK1. ULK1-dependent phosphorylation of RIPK1 reduces complex IIb/necrosome assembly and tumor necrosis factor (TNF)-induced cell death, whereas deprivation of ULK1 enhances TNF-induced cell death. We observe that ULK1 phosphorylates multiple sites of RIPK1, but it appears that especially phosphorylation of S357 within the intermediate domain of RIPK1 mediates this cell-death-inhibiting effect. We propose that ULK1 is a regulator of RIPK1-mediated cell death.
Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Autofagia , Morte Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Fosforilação , Transdução de SinaisRESUMO
RATIONALE: Increasing prevalence of obesity and its associated risk with cardiovascular diseases demands a better understanding of the contribution of different cell types within this complex disease for developing new treatment options. Previous studies could prove a fundamental role of FTO (fat mass and obesity-associated protein) within obesity; however, its functional role within different cell types is less understood. OBJECTIVES: We identify endothelial FTO as a previously unknown central regulator of both obesity-induced metabolic and vascular alterations. METHODS AND RESULTS: We generated endothelial Fto-deficient mice and analyzed the impact of obesity on those mice. While the loss of endothelial FTO did not influence the development of obesity and dyslipidemia, it protected mice from high-fat diet-induced glucose intolerance and insulin resistance by increasing AKT (protein kinase B) phosphorylation in endothelial cells and skeletal muscle. Furthermore, loss of endothelial FTO prevented the development of obesity-induced hypertension by preserving myogenic tone in resistance arteries. In Fto-deficient arteries, microarray analysis identified upregulation of L-Pgds with significant increases in prostaglandin D2 levels. Blockade of prostaglandin D2 synthesis inhibited the myogenic tone protection in resistance arteries of endothelial Fto-deficient mice on high-fat diet; conversely, direct addition of prostaglandin D2 rescued myogenic tone in high-fat diet-fed control mice. Myogenic tone was increased in obese human arteries with FTO inhibitors or prostaglandin D2 application. CONCLUSIONS: These data identify endothelial FTO as a previously unknown regulator in the development of obesity-induced metabolic and vascular changes, which is independent of its known function in regulation of obesity.
Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Endotélio Vascular/metabolismo , Obesidade/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Artérias/metabolismo , Artérias/patologia , Endotélio Vascular/patologia , Humanos , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Masculino , Camundongos , Tono Muscular , Músculo Esquelético/metabolismo , Obesidade/genética , Obesidade/patologia , Prostaglandina D2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
RATIONALE: Immediate changes in the ECM (extracellular matrix) microenvironment occur after myocardial ischemia and reperfusion (I/R) injury. OBJECTIVE: Aim of this study was to unravel the role of the early hyaluronan (HA)-rich ECM after I/R. METHODS AND RESULTS: Genetic deletion of Has2 and Has1 was used in a murine model of cardiac I/R. Chemical exchange saturation transfer imaging was adapted to image cardiac ECM post-I/R. Of note, the cardiac chemical exchange saturation transfer signal was severely suppressed by Has2 deletion and pharmacological inhibition of HA synthesis 24 hours after I/R. Has2 KO ( Has2 deficient) mice showed impaired hemodynamic function suggesting a protective role for endogenous HA synthesis. In contrast to Has2 deficiency, Has1-deficient mice developed no specific phenotype compared with control post-I/R. Importantly, in Has2 KO mice, cardiac macrophages were diminished after I/R as detected by 19F MRI (magnetic resonance imaging) of perfluorcarbon-labeled immune cells, Mac-2/Galectin-3 immunostaining, and FACS (fluorescence-activated cell sorting) analysis (CD45+CD11b+Ly6G-CD64+F4/80+cells). In contrast to macrophages, cardiac Ly6Chigh and Ly6Clow monocytes were unaffected post-I/R compared with control mice. Mechanistically, inhibition of HA synthesis led to increased macrophage apoptosis in vivo and in vitro. In addition, α-SMA (α-smooth muscle actin)-positive cells were reduced in the infarcted myocardium and in the border zone. In vitro, the myofibroblast response as measured by Acta2 mRNA expression was reduced by inhibition of HA synthesis and of CD44 signaling. Furthermore, Has2 KO fibroblasts were less able to contract collagen gels in vitro. The effects of HA/CD44 on fibroblasts and macrophages post-I/R might also affect intercellular cross talk because cardiac fibroblasts were activated by monocyte/macrophages and, in turn, protected macrophages from apoptosis. CONCLUSIONS: Increased HA synthesis contributes to postinfarct healing by supporting macrophage survival and by promoting the myofibroblast response. Additionally, imaging of cardiac HA by chemical exchange saturation transfer post-I/R might have translational value.
Assuntos
Matriz Extracelular/fisiologia , Hialuronan Sintases/deficiência , Ácido Hialurônico/biossíntese , Macrófagos/fisiologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Cicatrização/fisiologia , Actinas/metabolismo , Animais , Apoptose , Comunicação Celular/fisiologia , Sobrevivência Celular , Microambiente Celular/fisiologia , Matriz Extracelular/metabolismo , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/antagonistas & inibidores , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Monócitos/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/citologia , Miofibroblastos/metabolismo , Miofibroblastos/fisiologiaRESUMO
Ischemia-reperfusion (IR) due to temporary restriction of blood flow causes tissue/organ damages under various disease conditions, including stroke, myocardial infarction, trauma, and orthopedic surgery. In the limbs, IR injury to motor nerves and muscle fibers causes reduced mobility and quality of life. Endurance exercise training has been shown to increase tissue resistance to numerous pathological insults. To elucidate the impact of endurance exercise training on IR injury in skeletal muscle, sedentary and exercise-trained mice (5 wk of voluntary running) were subjected to ischemia by unilateral application of a rubber band tourniquet above the femur for 1 h, followed by reperfusion. IR caused significant muscle injury and denervation at neuromuscular junction (NMJ) as early as 3 h after tourniquet release as well as depressed muscle strength and neuromuscular transmission in sedentary mice. Despite similar degrees of muscle atrophy and oxidative stress, exercise-trained mice had significantly reduced muscle injury and denervation at NMJ with improved regeneration and functional recovery following IR. Together, these data suggest that endurance exercise training preserves motor nerve and myofiber structure and function from IR injury and promote functional regeneration. NEW & NOTEWORTHY This work provides the first evidence that preemptive voluntary wheel running reduces neuromuscular dysfunction following ischemia-reperfusion injury in skeletal muscle. These findings may alter clinical practices in which a tourniquet is used to modulate blood flow.
Assuntos
Membro Posterior/irrigação sanguínea , Junção Neuromuscular , Condicionamento Físico Animal , Traumatismo por Reperfusão/prevenção & controle , Animais , Masculino , Camundongos , Contração Muscular , Estresse OxidativoRESUMO
Intraorgan communication in the cardiovascular system is exerted not only by direct cell-cell contacts but also by locally released factors, which modulate neighboring cells by paracrine signals (e.g., NO, vascular endothelial growth factor, adenosine, reactive oxygen species). Moreover, cells in close proximity to the typical cardiovascular cells such as fibroblasts, red blood cells, as well as resident and invading immune cells must be considered in attempts to understand cardiovascular function in physiology and pathology. The second level of communication is the interorgan communication, which may be distinguished from intraorgan communication, since it involves signaling from remote organs to the heart and circulation. Therefore, mediators released by, for example, the kidney or skeletal muscle reach the heart and modulate its function. This is not only the case under physiological conditions, because there is increasing evidence that the organ-specific response to a primary insult may affect also the function of remote organs by the release of factors. This Forum will summarize novel mechanisms involved in intraorgan and interorgan communication of the cardiovascular system, with a special view on the remote organs, skeletal muscle and kidney. Antioxid. Redox Signal. 26, 613-615.
Assuntos
Antioxidantes/metabolismo , Sistema Cardiovascular/metabolismo , Comunicação Parácrina/genética , Adenosina/genética , Adenosina/metabolismo , Sistema Cardiovascular/fisiopatologia , Fibroblastos/metabolismo , Humanos , Rim/metabolismo , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismoRESUMO
SIGNIFICANCE: Cachexia is defined as a complex metabolic syndrome that is associated with underlying illness and a loss of muscle with or without loss of fat mass. This disease is associated with a high incidence with chronic diseases such as heart failure, cancer, chronic obstructive pulmonary disease (COPD), and acquired immunodeficiency syndrome (AIDS), among others. Since there is currently no effective treatment available, cachectic patients have a poor prognosis. Elucidation of the underlying mechanisms is, therefore, an important medical task. Recent Advances: There is accumulating evidence that the diseased organs such as heart, lung, kidney, or cancer tissue secrete soluble factors, including Angiotensin II, myostatin (growth differentiation factor 8 [GDF8]), GDF11, tumor growth factor beta (TGFß), which act on skeletal muscle. There, they induce a set of genes called atrogenes, which, among others, induce the ubiquitin-proteasome system, leading to protein degradation. Moreover, elevated reactive oxygen species (ROS) levels due to modulation of NADPH oxidases (Nox) and mitochondrial function contribute to disease progression, which is characterized by loss of muscle mass, exercise resistance, and frailty. CRITICAL ISSUES: Although substantial progress was achieved to elucidate the pathophysiology of cachexia, effectice therapeutic strategies are urgently needed. FUTURE DIRECTIONS: With the identification of key components of the aberrant inter-organ communication leading to cachexia, studies in mice and men to inhibit ROS formation, induction of anti-oxidative superoxide dismutases, and upregulation of muscular nitric oxide (NO) formation either by pharmacological tools or by exercise are promising approaches to reduce the extent of skeletal muscle wasting. Antioxid. Redox Signal. 26, 700-717.
Assuntos
Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Síndrome de Emaciação/metabolismo , Animais , Humanos , Espécies Reativas de Oxigênio/antagonistas & inibidoresRESUMO
The protein kinase AKT is a central kinase in the heart and has a major impact on growth/hypertrophy, survival/apoptosis, and metabolism. To gain more insight into AKT isoform-specific signaling at the molecular level, we investigated the phosphoproteome of HL-1 cardiomyocytes carrying AKT1 or AKT2 isoform-specific knock down, respectively. We combined stable isotope labeling with high resolution mass spectrometry and identified 377 regulated phosphopeptides. Although AKT1 is expressed at 4-fold higher levels, insulin stimulation mainly activated AKT2, which might in part rely on a preferred interaction of AKT2 with the mammalian target of rapamycin complex 2. In line with this result, the highest number of regulated phosphopeptides was identified in the AKT2 knock down cells. Isoform-specific regulation of AKT targets not previously described could be observed, and specific regulation of indirect target sites allows a deeper insight into affected biological processes. In the myocardial context, we identified many phosphosites supporting a connection of AKT to excitation-contraction coupling. Phosphoproteins identified included L-type calcium channel, ryanodine receptor, junctophilin, histidine-rich calcium binding protein, phospholamban, heat shock protein beta-6, and Ca²âº/calmodulin-dependent kinase II. In conclusion, AKT isoform-specific knock down combined with quantitative phosphoproteomics provided a powerful strategy to unravel AKT isoform-specific signaling.
Assuntos
Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Primers do DNA , Técnicas de Silenciamento de Genes , Humanos , Insulina/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Dados de Sequência Molecular , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genéticaRESUMO
AKT2 is one of the three isoforms of the protein kinase AKT being involved in the modulation of cellular metabolism. Since protein-protein interactions are one possibility to convey specificity in signal transduction, we performed AKT2-protein interaction analysis to elucidate their relevance for AKT2-dependent cellular functions. We identified heat shock protein 90 kDa (HSP90), Cdc37, heat shock protein 70 kDa (HSP70), 78 kDa glucose regulated protein (GRP78), tubulin, GAPDH, α-enolase and elongation factor 2 (EF2) as AKT2-interacting proteins by a combination of tandem affinity purification and mass spectrometry in HEK293T cells. Quantitative MS-analysis using stable isotope labeling by amino acids in cell culture (SILAC) revealed that only HSP90 and Cdc37 interact stably with AKT2, whereas the other proteins interact with low affinity with AKT2. The interactions of AKT2 with α-enolase and EF2 were further analyzed in order to uncover the functional relevance of these newly discovered binding partners. Despite the interaction of AKT2 and α-enolase, which was additionally validated by proximity ligation assay (PLA), no significant impact of AKT on α-enolase activity was detected in activity measurements. AKT stimulation via insulin and/or inhibition with the ATP-competitive inhibitor CCT128930 did not alter enzymatic activity of α-enolase. Interestingly, the direct interaction of AKT2 and EF2 was found to be dynamically regulated in embryonic rat cardiomyocytes. Treatment with the PI3-kinase inhibitor LY294002 before stimulation with several hormones stabilized the complex, whereas stimulation alone led to complex dissociation which was analyzed in situ with PLA. Taken together, these findings point to new aspects of AKT2-mediated signal transduction in protein synthesis and glucose metabolism.
Assuntos
Fator 2 de Elongação de Peptídeos/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cromatografia de Afinidade , Chaperona BiP do Retículo Endoplasmático , Glicólise , Células HEK293 , Humanos , Ligação Proteica , Espectrometria de Massas em TandemRESUMO
The transcription factor NR4A1 belongs to the class of orphan nuclear receptors without known ligand which might control its activity. Here we examined its transcriptional regulation in response to elevated cAMP levels in HL-1 cardiac myocytes and in the heart in vivo. We report, that murine Nr4a1 is expressed from distinct promoters located upto -11.5 kb from the first coding exon. Whereas in HL-1 cells only two of the three distinct transcripts were induced by cAMP, in the heart all transcripts were regulated in response to ß-adrenergic stimulation.
Assuntos
Regulação da Expressão Gênica/fisiologia , Loci Gênicos/fisiologia , Proteínas Musculares/biossíntese , Miócitos Cardíacos/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/biossíntese , Regiões Promotoras Genéticas/fisiologia , Animais , Linhagem Celular , AMP Cíclico/genética , AMP Cíclico/metabolismo , Camundongos , Miócitos Cardíacos/citologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Transcrição Gênica/fisiologiaRESUMO
Insulin-like growth factor (IGF-I) signaling has been implicated to play an important role in regulation of cardiac growth, hypertrophy, and contractile function and has been linked to the development of age-related congestive heart failure. Here, we address the question to what extent cardiomyocyte-specific IGF-I signaling is essential for maintenance of the structural and functional integrity of the adult murine heart. To investigate the effects of IGF-I signaling in the adult heart without confounding effects due to IGF-I overexpression or adaptation during embryonic and early postnatal development, we inactivated the IGF-I receptor (IGF-IR) by a 4-hydroxytamoxifen-inducible Cre recombinase in adult cardiac myocytes. Efficient inactivation of the IGF-IR (iCMIGF-IRKO) as assessed by Western analysis and real-time PCR went along with reduced IGF-I-dependent Akt and GSK3ß phosphorylation. Functional analysis by conductance manometry and MRI revealed no functional alterations in young adult iCMIGF-IRKO mice (age 3 mo). However, when induced in aging mice (11 mo) diastolic cardiac function was depressed. To address the question whether insulin signaling might compensate for the defective IGF-IR signaling, we inactivated ß-cells by streptozotocin. However, the diabetes-associated functional depression was similar in control and iCMIGF-IRKO mice. Similarly, analysis of the cardiac gene expression profile on 44K microarrays did not reveal activation of overt adaptive processes. Endogenous IGF-IR signaling is required for conservation of cardiac function of the aging heart, but not for the integrity of cardiac structure and function of young hearts.
Assuntos
Envelhecimento/metabolismo , Coração/fisiologia , Receptor IGF Tipo 1/fisiologia , Transdução de Sinais/fisiologia , Adaptação Fisiológica , Animais , Células Cultivadas , Diabetes Mellitus Experimental/fisiopatologia , Perfilação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/fisiologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/genéticaRESUMO
ATP and its degradation products play an important role as signaling molecules in the vascular system, and endothelial cells are considered to be an important source of nucleotide release. To investigate the mechanism and physiological significance of endothelial ATP release, we compared different pharmacological stimuli for their ability to evoke ATP release from first passage cultivated human umbilical vein endothelial cells (HUVECs). Agonists known to increase intracellular Ca(2+) levels (A23187, histamine, thrombin) induced a stable, non-lytic ATP release. Since thrombin proved to be the most robust and reproducible stimulus, the molecular mechanism of thrombin-mediated ATP release from HUVECs was further investigated. ATP rapidly increased with thrombin (1 U/ml) and reached a steady-state level after 4 min. Loading the cells with BAPTA-AM to capture intracellular calcium suppressed ATP release. The thrombin-specific, protease-activated receptor 1 (PAR-1)-specific agonist peptide TFLLRN (10 µM) fully mimicked thrombin action on ATP release. To identify the nature of the ATP-permeable pathway, we tested various inhibitors of potential ATP channels for their ability to inhibit the thrombin response. Carbenoxolone, an inhibitor of connexin hemichannels and pannexin channels, as well as Gd(3+) were highly effective in blocking the thrombin-mediated ATP release. Specifically targeting connexin43 (Cx43) and pannexin1 (Panx1) revealed that reducing Panx1 expression significantly reduced ATP release, while downregulating Cx43 was ineffective. Our study demonstrates that thrombin at physiological concentrations is a potent stimulus of endothelial ATP release involving PAR-1 receptor activation and intracellular calcium mobilization. ATP is released by a carbenoxolone- and Gd(3+)- sensitive pathway, most likely involving Panx1 channels.
Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Receptor PAR-1/metabolismo , Trombina/farmacologia , Trifosfato de Adenosina/agonistas , Trifosfato de Adenosina/antagonistas & inibidores , Calcimicina/farmacologia , Cálcio/antagonistas & inibidores , Carbenoxolona/farmacologia , Células Cultivadas , Conexina 43/antagonistas & inibidores , Conexinas/antagonistas & inibidores , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Gadolínio/farmacologia , Histamina/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Oligopeptídeos/farmacologia , RNA Interferente Pequeno/farmacologia , Receptor PAR-1/agonistasRESUMO
Nitric oxide (NO) is produced by different isoforms of nitric oxide synthases (NOSs) and operates as a mediator of important cell signaling pathways, such as the cGMP signaling cascade. Another mechanism by which NO exerts biological effects is mediated through S-nitrosation of target proteins. To explore thiol-based protein modifications in a situation of defined nitrosative stress, we used a transgenic mouse model with cardiac specific overexpression of inducible nitric oxide synthase (iNOS) and concomitant myoglobin deficiency (iNOS(+)/myo(-/-)). In comparison with the wild type hearts, protein glutathiolation detected by immunoblotting was significantly enhanced in iNOS(+)/myo(-/-) hearts, whereas protein S-nitrosation as measured by the biotin switch assay and two-dimensional PAGE revealed that nearly all of the detected proteins ( approximately 60) remained unchanged with the exception of three proteins. Tandem mass spectrometry revealed these proteins to be peroxiredoxins (Prxs), which are known to possess peroxidase activity, whereby hydrogen peroxide, peroxynitrite, and a wide range of organic hydroperoxides are reduced and detoxified. Immunoblotting with specific antibodies revealed up-regulation of Prx VI in the iNOS(+)/myo(-/-) hearts, whereas expression of Prx II and Prx III remained unchanged. Furthermore, the analysis of the cardiac S-nitrososubproteome identified several new proteins possibly being involved in NO-signaling pathways. Our data indicate that S-nitrosation and glutathiolation of cardiac proteins may contribute to the phenotype of NO-induced heart failure. The up-regulation of antioxidant proteins like Prx VI appears to be an additional mechanism to antagonize an excess of reactive oxygen/nitrogen species. Furthermore, S-nitrosation of Prxs may serve a new function in the signaling cascade of nitrosative stress.
Assuntos
Miocárdio/metabolismo , Nitrosação , Peroxirredoxinas/metabolismo , Regulação para Cima , Animais , Antioxidantes/metabolismo , Eletroforese em Gel de Poliacrilamida , Glutationa/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Espécies Reativas de Oxigênio , Transdução de SinaisRESUMO
(31)P MRS studies in humans have shown that an impairment of cardiac energetics is characteristic of heart failure. Although numerous transgenic mouse models with a heart-failure phenotype have been generated, current methods to analyze murine high-energy phosphates (HEPs) in vivo are hampered by limited spatial resolution. Using acquisition-weighted 2D (31)P chemical shift imaging (CSI) at 9.4 Tesla, we were able to acquire (31)P MR spectra over the entire thorax of the mouse with high spatial resolution in defined regions of the heart (the anterior, lateral, posterior, and septal walls) within a reasonable acquisition time of about 75 min. Analysis of a transgenic cardiomyopathy model (double mutant: cardiospecific inducible nitric oxide synthase (iNOS) overexpression and lack of myoglobin (tg-iNOS(+)/myo(-/-)) revealed that cardiac dysfunction in the mutant was associated with an impaired energy state (phosphocreatine (PCr)/adenosine triphosphate (ATP) 1.54 +/- 0.18) over the entire left ventricle (LV; wild-type (WT): PCr/ATP 2.06 +/- 0.22, N = 5, P < 0.05), indicating that in the absence of efficient cytosolic NO scavenging, iNOS-derived NO critically interferes with the respiratory chain. In vivo data were validated against (31)P MR spectra of perchloric acid extracts (PCr/ATP: 1.87 +/- 0.21 (WT), 1.39 +/- 0.17 (tg-iNOS(+)/myo(-/-), N = 5, P < 0.05). Future applications will substantially benefit studies on the cause-and-effect relationship between cardiac energetics and function in other genetically well-defined models of heart failure.