Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943940

RESUMO

Constitutive- and immunoproteasomes are part of the ubiquitin-proteasome system (UPS), which is responsible for the protein homeostasis. Selective inhibition of the immunoproteasome offers opportunities for the treatment of numerous diseases, including inflammation, autoimmune diseases, and hematologic malignancies. Although several inhibitors have been reported, selective nonpeptidic inhibitors are sparse. Here, we describe two series of compounds that target both proteasomes. First, benzoxazole-2-carbonitriles as fragment-sized covalent immunoproteasome inhibitors are reported. Systematic substituent scans around the fragment core of benzoxazole-2-carbonitrile led to compounds with single digit micromolar inhibition of the ß5i subunit. Experimental and computational reactivity studies revealed that the substituents do not affect the covalent reactivity of the carbonitrile warhead, but mainly influence the non-covalent recognition. Considering the small size of the inhibitors, this finding emphasizes the importance of the non-covalent recognition step in the covalent mechanism of action. As a follow-up series, bidentate inhibitors are disclosed, in which electrophilic heterocyclic fragments, i.e., 2-vinylthiazole, benzoxazole-2-carbonitrile, and benzimidazole-2-carbonitrile were linked to threonine-targeting (R)-boroleucine moieties. These compounds were designed to bind both the Thr1 and ß5i-subunit-specific residue Cys48. However, inhibitory activities against (immuno)proteasome subunits showed that bidentate compounds inhibit the ß5, ß5i, ß1, and ß1i subunits with submicromolar to low-micromolar IC50 values. Inhibitory assays against unrelated enzymes showed that compounds from both series are selective for proteasomes. The presented nonpeptidic and covalent derivatives are suitable hit compounds for the development of either ß5i-selective immunoproteasome inhibitors or compounds targeting multiple subunits of both proteasomes.


Assuntos
Cisteína/química , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Treonina/química , Ubiquitina/química , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Benzoxazóis/química , Benzoxazóis/farmacologia , Química Computacional , Cisteína/imunologia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/imunologia , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Subunidades Proteicas/química , Subunidades Proteicas/imunologia , Relação Estrutura-Atividade , Treonina/imunologia , Ubiquitina/imunologia
2.
RSC Adv ; 10(25): 14928-14936, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35497170

RESUMO

Protein labelling has a wide variety of applications in medicinal chemistry and chemical biology. In addition to covalent inhibition, specific labelling of biomolecules with fluorescent dyes is important in both target discovery, validation and diagnostics. Our research was conducted through the fragment-based development of a new benzyl-isothiocyanate-activated fluorescent dye based on the fluorescein scaffold. This molecule was evaluated against fluorescein isothiocyanate, a prevalent labelling agent. The reactivity and selectivity of phenyl- and benzyl isothiocyanate were compared at different pHs, and their activity was tested on several protein targets. Finally, the clinically approved antibody trastuzumab (and it's Fab fragment) were specifically labelled through reaction with free cysteines reductively liberated from their interchain disulfide bonds. The newly developed benzyl-fluorescein isothiocyanate and its optimized labelling protocol stands to be a valuable addition to the tool kit of chemical biology.

3.
Sci Rep ; 9(1): 14822, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31616032

RESUMO

We have characterized site-specific N-glycosylation of the HeLa cell line glycoproteins, using a complex workflow based on high and low energy tandem mass spectrometry of glycopeptides. The objective was to obtain highly reliable data on common glycoforms, so rigorous data evaluation was performed. The analysis revealed the presence of a high amount of bovine serum contaminants originating from the cell culture media - nearly 50% of all glycans were of bovine origin. Unaccounted, the presence of bovine serum components causes major bias in the human cellular glycosylation pattern; as is shown when literature results using released glycan analysis are compared. We have reliably identified 43 (human) glycoproteins, 69 N-glycosylation sites, and 178 glycoforms. HeLa glycoproteins were found to be highly (68.7%) fucosylated. A medium degree of sialylation was observed, on average 46.8% of possible sialylation sites were occupied. High-mannose sugars were expressed in large amounts, as expected in the case of a cancer cell line. Glycosylation in HeLa cells is highly variable. It is markedly different not only on various proteins but also at the different glycosylation sites of the same protein. Our method enabled the detailed characterization of site-specific N-glycosylation of several glycoproteins expressed in HeLa cell line.


Assuntos
Meios de Cultura/análise , Glicoproteínas/metabolismo , Células HeLa/metabolismo , Polissacarídeos/metabolismo , Meios de Cultura/metabolismo , Glicosilação , Humanos , Metabolômica/métodos , Polissacarídeos/análise , Espectrometria de Massas em Tandem
4.
Rapid Commun Mass Spectrom ; 32(11): 844-850, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29575159

RESUMO

RATIONALE: Protein citrullination (deimination) is a post-translational modification of proteins converting arginine(s) into citrulline(s). "Overcitrullination" could be associated with severe pathological conditions. Mass spectrometric analysis of modified proteins is hindered by several problems. A comprehensive study of the fragmentation of deiminated peptides is not yet available. In this paper we have made an attempt to describe the characteristics of these processes, based on the studies of epitope model oligopeptides derived from clinically relevant proteins. METHODS: Solutions of purified model peptides containing either one or two citrulline residues as well as their native variants were injected directly into the electrospray source of a high accuracy and resolution quadrupole-time-of-flight instrument and were analysed by tandem mass spectrometry using low-energy collision-induced dissociation. RESULTS: Loss of isocyanic acid from citrulline residues is a preferred fragmentation route for deiminated peptides, which yields ornithine residues in the sequence. However, simultaneous detection of both the isocyanic acid loss and sequence fragments is often compromised. A preferential cleavage site was observed between citrulline and any other following amino acids yielding intensive complementary b- and y-type ions. Also, citrulline positioned at the C-termini displays a preferential cleavage N-terminal to this residue yielding characteristic y1 ions. These phenomena are described here for the first time and are referred to as the "citrulline effect". CONCLUSIONS: We found that the citrulline effect is very pronounced and could be used as a complementary tool for the confirmation of modification sites in addition to losses of isocyanic acids from the protonated molecules or from fragment ions. Low collision energy applied to peptide ions having partially mobile protons reveals the site of modification by generating specific and intensive fragments of the sequence. On the other hand, fragmenting precursor ions with mobile protons usually allows full sequence coverage, although citrulline-specific fragments may exhibit lower intensities compared to other fragments.


Assuntos
Citrulina/química , Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Artrite Reumatoide/imunologia , Epitopos/química , Humanos , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Mapeamento de Peptídeos/métodos , Peptídeos/análise , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização por Electrospray/métodos
5.
Anal Chim Acta ; 819: 108-15, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24636418

RESUMO

A high performance liquid chromatography (HPLC) tandem mass spectrometric (MS/MS) method has been developed for the simultaneous determination of fifteen glucose, or acetate derived metabolites isolated from tumor cells. Glycolytic and tricarboxylic acid (TCA) cycle metabolites as well as acidic amino acids were separated on a HPLC porous graphitic carbon (PGC) column and simultaneously determined by means of triple quadrupole MS/MS using multiple reaction monitoring (MRM). Target compounds were eluted within 10 min with 8% v/v formic acid as an electronic modifier added to a 4:1 v/v methanol water mobile phase. The calibration is linear in the 1-100 µM concentration range for each analyte. The limit of detection ranges between 0.39 and 2.78 µM for the analytes concerned. To test the PGC-HPLC-MS/MS method in metabolomic studies, ZR-75.1 human mammary adenocarcinoma cells were labeled with U-(13)C glucose or 1-(13)C acetate. Applying the MRM mode, the incorporation of (13)C into metabolites, isolated from the tumor cells, and derived from glucose or acetate, could be properly identified.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias da Mama/metabolismo , Carbono/química , Metabolismo Energético , Adenocarcinoma/patologia , Neoplasias da Mama/patologia , Cromatografia Líquida , Humanos , Tamanho da Partícula , Porosidade , Espectrometria de Massas por Ionização por Electrospray , Propriedades de Superfície , Células Tumorais Cultivadas
6.
J Mass Spectrom ; 38(5): 517-22, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12794872

RESUMO

For the first time a secondary ion mass spectrum of diethyl ether was obtained at low temperature. The spectrum recording became possible by carefully selecting the range of experimental conditions for the production of a cluster-type spectrum. This range is specified by the threshold for spectrum appearance above the melting temperature of the frozen sample and a fairly short time span of existence of the liquid estimated as only a few minutes. The latter necessitates rather rapid spectrum detection. In practice, about 1 min was available for recording of the cluster-type spectra. The secondary emission mass spectrum of diethyl ether appeared to be rich in peaks: along with abundant protonated clusters M(n).H(+) (n = 1-12), unusually intense [M(n) - H](+) and weaker M(n) (+.) peaks were present accompanied by several sets of fragmented clusters, [M(n) - 15](+), [M(n) - 29](+), [M(n) - 27](+), [M(n) - 45](+), and monohydrates, M(n).H(2)O.H(+). The analysis of all the peaks showed that the pattern of fragment clusters is qualitatively similar to the pattern of fragmentation of the diethyl ether molecular ion under high-energy electron impact. The general features of the behaviour of diethyl ether under low-temperature mass spectrometric conditions were similar to those observed earlier for some other organic solvents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA