Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 10(4)2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642581

RESUMO

Endogenous retrovirus (ERV) sequences provide a rich source of information about the long-term interactions between retroviruses and their hosts. However, most ERVs are derived from a subset of retrovirus groups, while ERVs derived from certain other groups remain extremely rare. In particular, only a single ERV sequence has been identified that shows evidence of being related to an ancient Deltaretrovirus, despite the large number of vertebrate genome sequences now available. In this report, we identify a second example of an ERV sequence putatively derived from a past deltaretroviral infection, in the genomes of several species of horseshoe bats (Rhinolophidae). This sequence represents a fragment of viral genome derived from a single integration. The time of the integration was estimated to be 11-19 million years ago. This finding, together with the previously identified endogenous Deltaretrovirus in long-fingered bats (Miniopteridae), suggest a close association of bats with ancient deltaretroviruses.


Assuntos
Quirópteros/virologia , Deltaretrovirus/genética , Retrovirus Endógenos/genética , Genoma/genética , Animais , Quirópteros/classificação , Deltaretrovirus/classificação , Retrovirus Endógenos/classificação , Evolução Molecular , Genômica , Filogenia , Recombinação Genética , Sequências Repetidas Terminais/genética
2.
Acta Vet Hung ; 63(4): 508-25, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-26599097

RESUMO

From over 1250 extant species of the order Chiroptera, 25 and 28 are known to occur in Germany and Hungary, respectively. Close to 350 samples originating from 28 bat species (17 from Germany, 27 from Hungary) were screened for the presence of adenoviruses (AdVs) using a nested PCR that targets the DNA polymerase gene of AdVs. An additional PCR was designed and applied to amplify a fragment from the gene encoding the IVa2 protein of mastadenoviruses. All German samples originated from organs of bats found moribund or dead. The Hungarian samples were excrements collected from colonies of known bat species, throat or rectal swab samples, taken from live individuals that had been captured for faunistic surveys and migration studies, as well as internal organs of dead specimens. Overall, 51 samples (14.73%) were found positive. We detected 28 seemingly novel and six previously described bat AdVs by sequencing the PCR products. The positivity rate was the highest among the guano samples of bat colonies. In phylogeny reconstructions, the AdVs detected in bats clustered roughly, but not perfectly, according to the hosts' families (Vespertilionidae, Rhinolophidae, Hipposideridae, Phyllostomidae and Pteropodidae). In a few cases, identical sequences were derived from animals of closely related species. On the other hand, some bat species proved to harbour more than one type of AdV. The high prevalence of infection and the large number of chiropteran species worldwide make us hypothesise that hundreds of different yet unknown AdV types might circulate in bats.

3.
PLoS One ; 8(9): e74105, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023927

RESUMO

White-nose syndrome (WNS) has claimed the lives of millions of hibernating insectivorous bats in North America. Its etiologic agent, the psychrophilic fungus Geomyces destructans, causes skin lesions that are the hallmark of the disease. The fungal infection is characterized by a white powdery growth on muzzle, ears and wing membranes. While WNS may threaten some species of North American bats with regional extinction, infection in hibernating bats in Europe seems not to be associated with significant mortality. We performed histopathological investigations on biopsy samples of 11 hibernating European bats, originating from 4 different countries, colonized by G. destructans. One additional bat was euthanized to allow thorough examination of multiple strips of its wing membranes. Molecular analyses of touch imprints, swabs and skin samples confirmed that fungal structures were G. destructans. Additionally, archived field notes on hibernacula monitoring data in the Harz Mountains, Germany, over an 11-year period (2000-2011) revealed multiple capture-recapture events of 8 banded bats repeatedly displaying characteristic fungal colonization. Skin lesions of G. destructans-affected hibernating European bats are intriguingly similar to the epidermal lesions described in North American bats. Nevertheless, deep invasion of fungal hyphae into the dermal connective tissue with resulting ulceration like in North American bats was not observed in the biopsy samples of European bats; all lesions found were restricted to the layers of the epidermis and its adnexae. Two bats had mild epidermal cupping erosions as described for North American bats. The possible mechanisms for any difference in outcomes of G. destructans infection in European and North American bats still need to be elucidated.


Assuntos
Ascomicetos/fisiologia , Quirópteros/microbiologia , Quirópteros/fisiologia , Hibernação , Dermatopatias/veterinária , Pele/microbiologia , Animais , Ascomicetos/crescimento & desenvolvimento , Feminino , Masculino , Pele/patologia , Dermatopatias/etiologia , Dermatopatias/microbiologia , Dermatopatias/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA