Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncol Lett ; 27(1): 37, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38108073

RESUMO

Laryngeal cancer accounts for one-third of all head and neck tumors, with squamous cell carcinoma (SCC) being the most predominant type, followed by neuroendocrine tumors. Chromogranins, are commonly used as biomarkers for neuroendocrine tumors, including laryngeal cancer. It has been reported that secretogranin VGF, a member of the chromogranin family, can be also used as a significant biomarker for neuroendocrine tumors. However, the expression and role of VGF in laryngeal carcinomas have not been previously investigated. Therefore, the present study aimed to determine the expression levels of VGF in laryngeal SCC (LSCC). The present study collected tumor tissues, as well as serum samples, from a cohort of 15 patients with LSCC. The results of reverse transcription-quantitative PCR, western blot analysis and immunofluorescence assays showed that the selective VGF precursor was downregulated in patients with LSCC. Notably, in tumor tissue, the immunoreactivity for VGF was found in vimentin-positive cells, probably corresponding to T lymphocytes. The current preliminary study suggested that the reduced expression levels of VGF observed in tumor tissue and at the systemic level could sustain LSCC phenotype. Overall, VGF could be a potential biomarker for detecting neoplastic lesions with a higher risk of tumor invasiveness, even in non-neuroendocrine tumors.

2.
Curr Top Med Chem ; 23(13): 1196-1210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36815637

RESUMO

BACKGROUND AND OBJECTIVES: This retrospective study aims to disclose further early parameters of COVID-19 morbidity and mortality. METHODS: Three hundred and eighty-two COVID-19 patients, recruited between March and April 2020, were divided into three groups according to their outcome: (1) hospital ward group (patients who entered the hospital wards and survived); (2) intensive care unit (ICU) group (patients who attended the ICU and survived); (3) the deceased group (patients admitted to ICU with a fatal outcome). We investigated routine laboratory parameters such as albumin, glycemia, hemoglobin amylase, lipase, AST, ALT, GGT, LDH, CK, MGB, TnT-hs, IL-6, ferritin, CRP, PCT, WBC, RBC, PLT, PT, INR, APTT, FBG, and D-dimer. Blood withdrawal was carried out at the beginning of the hospitalization period. RESULTS: ANOVA and ROC data evidenced that the concomitant presence of alterations in albumin, lipase, AST, ALT, LDH, MGB, CK, IL-6, ferritin in women, CRP and D-dimer is an early sign of fatal outcomes. CONCLUSION: The present study confirms and extends the validity of routine laboratory biomarkers (i.e., lipase, AST, ALT, LDH, CK, IL-6, ferritin in women, CRP and D-dimer) as indicators of COVID-19 morbidity and mortality. Furthermore, the investigation suggests that both gross changes in albumin and MGB, markers of liver and heart damage, may early disclose COVID-19 fatal outcomes.


Assuntos
COVID-19 , Humanos , Feminino , SARS-CoV-2 , Estudos Retrospectivos , Interleucina-6 , Biomarcadores , Morbidade , Albuminas , Ferritinas
3.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675308

RESUMO

Head and neck squamous cell carcinoma (HNSCC) arises from the mucosal epithelium in the oral cavity, pharynx, sino-nasal region, and larynx. Laryngeal squamous cell carcinoma (LSCC) represents one-third of all head and neck cancers. Dysregulated RNA-related pathways define an important molecular signature in this aggressive carcinoma. The Survival Motor Neuron (SMN) protein regulates fundamental aspects of the RNA metabolism but, curiously, its role in cancer is virtually unknown. For the first time, here, we focus on the SMN in the cancer context. We conducted a pilot study in a total of 20 patients with LSCC where the SMN was found overexpressed at both the protein and transcript levels. By a cellular model of human laryngeal carcinoma, we demonstrated that the SMN impacts cancer-relevant behaviors and perturbs key players of cell migration, invasion, and adhesion. Furthermore, in LSCC we showed a physical interaction between the SMN and the epidermal growth factor receptor (EGFR), whose overexpression is an important feature in these tumors. This study proposes the SMN protein as a novel therapeutic target in LSSC and likely in the whole spectrum of HNSCC. Overall, we provide the first analysis of the SMN in human cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/patologia , Projetos Piloto , Neoplasias de Cabeça e Pescoço/genética , Neoplasias Laríngeas/metabolismo , RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética
4.
Curr Med Chem ; 28(37): 7595-7613, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33949928

RESUMO

The Mediterranean diet is worldwide recognized as a good prototype of nutrition due to the conspicuous intake of olive oil, nuts, red wine, legumes, fruit, and vegetables, all fundamental elements rich in antioxidant substances and polyphenols. Polyphenols are a wide range of phytochemicals and/or synthetic chemical compounds with proven beneficial properties for human health. In the present review, we critically summarize the wellcharacterized antioxidant and anti-inflammatory properties of polyphenols contained in the olives and extra virgin olive oil and of resveratrol, a non-flavonoid phenolic compound. We discuss the potential use of these polyphenols as pharmaceutical formulations for the treatment of human diseases. We also show the emerging importance of their consumption in the prevention and management of crucial neurodegenerative conditions (alcohol-related brain disorders and aging) and in neuromuscular disorders (Spinal Muscular Atrophy and Amyotrophic Lateral Sclerosis and Duchenne Muscular Dystrophy), where oxidative stress plays a predominant role.


Assuntos
Dieta Mediterrânea , Olea , Encéfalo , Humanos , Músculos , Azeite de Oliva , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Resveratrol
5.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt A): 1172-1182, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29408646

RESUMO

Up-regulation of the dystrophin-related gene utrophin represents a promising therapeutic strategy for the treatment of Duchenne Muscular Dystrophy (DMD). In order to re-program the utrophin expression level in muscle, we engineered artificial zinc finger transcription factors (ZF-ATFs) that target the utrophin 'A' promoter. We have previously shown that the ZF-ATF "Jazz", either by transgenic manipulation or by systemic adeno-associated viral delivery, induces significant rescue of muscle function in dystrophic "mdx" mice. We present the full characterization of an upgraded version of Jazz gene named "JZif1" designed to minimize any possible host immune response. JZif1 was engineered on the Zif268 gene-backbone using selective amino acid substitutions to address JZif1 to the utrophin 'A' promoter. Here, we show that JZif1 induces remarkable amelioration of the pathological phenotype in mdx mice. To investigate the molecular mechanisms underlying Jazz and JZif1 induced muscle functional rescue, we focused on utrophin related pathways. Coherently with utrophin subcellular localization and role in neuromuscular junction (NMJ) plasticity, we found that our ZF-ATFs positively impact the NMJ. We report on ZF-ATF effects on post-synaptic membranes in myogenic cell line, as well as in wild type and mdx mice. These results candidate our ZF-ATFs as novel therapeutic molecules for DMD treatment.


Assuntos
Terapia Genética/métodos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/terapia , Junção Neuromuscular/metabolismo , Engenharia de Proteínas , Fatores de Transcrição , Regulação para Cima , Animais , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Junção Neuromuscular/genética , Junção Neuromuscular/patologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Utrofina/genética , Dedos de Zinco
6.
J Exp Clin Cancer Res ; 35(1): 146, 2016 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-27639846

RESUMO

BACKGROUND: We have previously shown that the eukaryotic elongation factor subunit 1B gamma (eEF1Bγ) interacts with the RNA polymerase II (pol II) alpha-like subunit "C" (POLR2C), alone or complexed, in the pol II enzyme. Moreover, we demonstrated that eEF1Bγ binds the promoter region and the 3' UTR mRNA of the vimentin gene. These events contribute to localize the vimentin transcript and consequentially its translation, promoting a proper mitochondrial network. METHODS: With the intent of identifying additional transcripts that complex with the eEF1Bγ protein, we performed a series of ribonucleoprotein immunoprecipitation (RIP) assays using a mitochondria-enriched heavy membrane (HM) fraction. RESULTS: Among the eEF1Bγ complexed transcripts, we found the mRNA encoding the Che-1/AATF multifunctional protein. As reported by other research groups, we found the tumor suppressor p53 transcript complexed with the eEF1Bγ protein. Here, we show for the first time that eEF1Bγ binds not only Che-1 and p53 transcripts but also their promoters. Remarkably, we demonstrate that both the Che-1 transcript and its translated product localize also to the mitochondria and that eEF1Bγ depletion strongly perturbs the mitochondrial network and the correct localization of Che-1. In a doxorubicin (Dox)-induced DNA damage assay we show that eEF1Bγ depletion significantly decreases p53 protein accumulation and slightly impacts on Che-1 accumulation. Importantly, Che-1 and p53 proteins are components of the DNA damage response machinery that maintains genome integrity and prevents tumorigenesis. CONCLUSIONS: Our data support the notion that eEF1Bγ, besides its canonical role in translation, is an RNA-binding protein and a key player in cellular stress responses. We suggest for eEF1Bγ a role as primordial transcription/translation factor that links fundamental steps from transcription control to local translation.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Neoplasias/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , Proteínas Repressoras/genética , Proteína Supressora de Tumor p53/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Células HCT116 , Células HeLa , Humanos , Mitocôndrias/genética , Neoplasias/genética , Regiões Promotoras Genéticas , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo
7.
J Cell Physiol ; 229(9): 1283-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24469912

RESUMO

Over-expression of the dystrophin-related gene utrophin represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). The strategy is based on the ability of utrophin to functionally replace defective dystrophin. We developed the artificial zinc finger transcription factor "Jazz" that up-regulates both the human and mouse utrophin promoter. We observed a significant recovery of muscle strength in dystrophic Jazz-transgenic mdx mice. Here we demonstrate the efficacy of an experimental gene therapy based on the systemic delivery of Jazz gene in mdx mice by adeno-associated virus (AAV). AAV serotype 8 was chosen on the basis of its high affinity for skeletal muscle. Muscle-specific expression of the therapeutic Jazz gene was enhanced by adding the muscle α-actin promoter to the AAV vector (mAAV). Injection of mAAV8-Jazz viral preparations into mdx mice resulted in muscle-specific Jazz expression coupled with up-regulation of the utrophin gene. We show a significant recovery from the dystrophic phenotype in mAAV8-Jazz-treated mdx mice. Histological and physiological analysis revealed a reduction of fiber necrosis and inflammatory cell infiltration associated with functional recovery in muscle contractile force. The combination of ZF-ATF technology with the AAV delivery can open a new avenue to obtain a therapeutic strategy for treatment of DMD.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/terapia , Proteínas Recombinantes de Fusão/biossíntese , Fatores de Transcrição/biossíntese , Utrofina/metabolismo , Dedos de Zinco , Actinas/genética , Animais , Modelos Animais de Doenças , Genótipo , Humanos , Camundongos , Camundongos Endogâmicos mdx , Contração Muscular , Força Muscular , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Necrose , Fenótipo , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Recuperação de Função Fisiológica , Fatores de Tempo , Fatores de Transcrição/genética , Regulação para Cima , Utrofina/genética , Dedos de Zinco/genética
8.
J Biol Chem ; 281(48): 37009-16, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17023415

RESUMO

The biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) in higher eukaryotes requires the functions of several cellular proteins and includes nuclear as well as cytoplasmic phases. In the cytoplasm, a macromolecular complex containing the survival motor neuron (SMN) protein, Gemin2-8 and Unrip mediates the ATP-dependent assembly of Sm proteins and snRNAs into snRNPs. To carry out snRNP assembly, the SMN complex binds directly to both Sm proteins and snRNAs; however, the contribution of the individual components of the SMN complex to its composition, interactions, and function is poorly characterized. Here, we have investigated the functional role of Gemin8 using novel monoclonal antibodies against components of the SMN complex and RNA interference experiments. We show that Gemin6, Gemin7, and Unrip form a stable cytoplasmic complex whose association with SMN requires Gemin8. Gemin8 binds directly to SMN and mediates its interaction with the Gemin6/Gemin7 heterodimer. Importantly, loss of Gemin6, Gemin7, and Unrip interaction with SMN as a result of Gemin8 knockdown affects snRNP assembly by impairing the SMN complex association with Sm proteins but not with snRNAs. These results reveal the essential role of Gemin8 for the proper structural organization of the SMN complex and the involvement of the heteromeric subunit containing Gemin6, Gemin7, Gemin8, and Unrip in the recruitment of Sm proteins to the snRNP assembly pathway.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/metabolismo , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Proteínas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN , Spliceossomos/metabolismo
9.
Hum Mol Genet ; 14(23): 3629-42, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16236758

RESUMO

Spinal muscular atrophy (SMA) is a lethal neuromuscular disease caused by reduced levels of expression of the survival motor neuron (SMN) protein. SMN is part of a macromolecular complex essential for the assembly of the small nuclear ribonucleoproteins (snRNPs) that carry out pre-mRNA splicing. Although the SMN complex has the potential to control the pathway of snRNP biogenesis, it is not known whether SMN function in snRNP assembly is regulated. Here, we analyze SMN interactions and function in mouse tissues and show that, when normalized per cell number, similar levels of the SMN complex are expressed throughout the ontogenesis of the central nervous system (CNS). Strikingly, however, SMN function in snRNP assembly in extracts does not correlate with its expression levels and it varies greatly both among tissues and during development. The highest levels of SMN activity are found during the embryonic and early postnatal development of the CNS and are followed by a sharp decrease to a basal level, which is then maintained throughout life. This downregulation takes place in the spinal cord earlier than in the brain and coincides with the onset of myelination. Using model cell systems and pulse-labeling experiments, we further show that SMN activity and snRNP synthesis are strongly downregulated upon neuronal as well as myogenic differentiation, and linked to the rate of global transcription of postmitotic neurons and myotubes. These results demonstrate that the SMN complex activity in snRNP assembly is regulated and point to a differential requirement for SMN function during development and cellular differentiation.


Assuntos
Autoantígenos/metabolismo , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/crescimento & desenvolvimento , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Animais , Autoantígenos/genética , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Diferenciação Celular , Sistema Nervoso Central/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Regulação para Baixo , Feminino , Camundongos , Células Musculares/citologia , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Proteínas de Ligação a RNA/genética , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas do Complexo SMN , Medula Espinal/embriologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Proteínas Centrais de snRNP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA