Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 29(3): 355-371.e10, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245467

RESUMO

Biliary diseases can cause inflammation, fibrosis, bile duct destruction, and eventually liver failure. There are no curative treatments for biliary disease except for liver transplantation. New therapies are urgently required. We have therefore purified human biliary epithelial cells (hBECs) from human livers that were not used for liver transplantation. hBECs were tested as a cell therapy in a mouse model of biliary disease in which the conditional deletion of Mdm2 in cholangiocytes causes senescence, biliary strictures, and fibrosis. hBECs are expandable and phenotypically stable and help restore biliary structure and function, highlighting their regenerative capacity and a potential alternative to liver transplantation for biliary disease.


Assuntos
Transplante de Fígado , Animais , Ductos Biliares/patologia , Células Epiteliais/patologia , Fibrose , Humanos , Doadores Vivos , Camundongos
2.
Sci Signal ; 14(688)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158399

RESUMO

In the adult liver, a population of facultative progenitor cells called biliary epithelial cells (BECs) proliferate and differentiate into cholangiocytes and hepatocytes after injury, thereby restoring liver function. In mammalian models of chronic liver injury, Notch signaling is essential for bile duct formation from these cells. However, the continual proliferation of BECs and differentiation of hepatocytes in these models have limited their use for determining whether Notch signaling is required for BECs to replenish hepatocytes after injury in the mammalian liver. Here, we used a temporally restricted model of hepatic repair in which large-scale hepatocyte injury and regeneration are initiated through the acute loss of Mdm2 in hepatocytes, resulting in the rapid, coordinated proliferation of BECs. We found that transient, early activation of Notch1- and Notch3-mediated signaling and entrance into the cell cycle preceded the phenotypic expansion of BECs into hepatocytes. Notch inhibition reduced BEC proliferation, which resulted in failure of BECs to differentiate into hepatocytes, indicating that Notch-dependent expansion of BECs is essential for hepatocyte regeneration. Notch signaling increased the abundance of the insulin-like growth factor 1 receptor (IGF1R) in BECs, and activating IGFR signaling increased BEC numbers but suppressed BEC differentiation into hepatocytes. These results suggest that different signaling mechanisms control BEC expansion and hepatocyte differentiation.


Assuntos
Fator de Crescimento Insulin-Like I , Regeneração Hepática , Animais , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Células Epiteliais , Hepatócitos , Fator de Crescimento Insulin-Like I/genética , Fígado
3.
Sci Rep ; 11(1): 3059, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542251

RESUMO

Liver disease cases are rapidly expanding across the globe and the only effective cure for end-stage disease is a transplant. Transplant procedures are costly and current supply of donor livers does not satisfy demand. Potential drug treatments and regenerative therapies that are being developed to tackle these pressing issues require effective in-vitro culture platforms. Electrospun scaffolds provide bio-mimetic structures upon which cells are cultured to regulate function in-vitro. This study aims to shed light on the effects of electrospun PCL morphology on the culture of an immortalised hepatic cell line and mouse primary hepatocytes. Each cell type was cultured on large 4-5 µm fibres and small 1-2 µm fibres with random, aligned and highly porous cryogenically spun configurations. Cell attachment, proliferation, morphology and functional protein and gene expression was analysed. Results show that fibre morphology has a measurable influence on cellular morphology and function, with the alteration of key functional markers such as CYP1A2 expression.


Assuntos
Citocromo P-450 CYP1A2/genética , Hepatopatias/terapia , Fígado/metabolismo , Alicerces Teciduais/química , Animais , Biomimética , Proliferação de Células/genética , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/crescimento & desenvolvimento , Fígado/patologia , Hepatopatias/genética , Hepatopatias/patologia , Camundongos , Engenharia Tecidual/métodos
4.
Cell Stem Cell ; 27(4): 557-573, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32971004

RESUMO

Following injury, the liver's epithelial cells regenerate efficiently with rapid proliferation of hepatocytes and biliary cells. However, when proliferation of resident epithelial cells is impaired, alternative regeneration mechanisms can occur. Intricate lineage-tracing strategies and experimental models of regenerative stress have revealed a degree of plasticity between hepatocytes and biliary cells. New technologies such as single-cell omics, in combination with functional studies, will be instrumental to uncover the remaining unknowns in the field. In this review, we evaluate the experimental and clinical evidence for epithelial plasticity in the liver and how this influences the development of therapeutic strategies for chronic liver disease.


Assuntos
Hepatopatias , Regeneração Hepática , Proliferação de Células , Células Epiteliais , Hepatócitos , Humanos , Fígado
5.
Stem Cell Res Ther ; 11(1): 154, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276654

RESUMO

BACKGROUND: Hepatocyte-like cells (iHEPs) generated by transcription factor-mediated direct reprogramming of somatic cells have been studied as potential cell sources for the development of novel therapies targeting liver diseases. The mechanisms involved in direct reprogramming, stability after long-term in vitro expansion, and safety profile of reprogrammed cells in different experimental models, however, still require further investigation. METHODS: iHEPs were generated by forced expression of Foxa2/Hnf4a in mouse mesenchymal stromal cells and characterized their phenotype stability by in vitro and in vivo analyses. RESULTS: The iHEPs expressed mixed hepatocyte and liver progenitor cell markers, were highly proliferative, and presented metabolic activities in functional assays. A progressive loss of hepatic phenotype, however, was observed after several passages, leading to an increase in alpha-SMA+ fibroblast-like cells, which could be distinguished and sorted from iHEPs by differential mitochondrial content. The resulting purified iHEPs proliferated, maintained liver progenitor cell markers, and, upon stimulation with lineage maturation media, increased expression of either biliary or hepatocyte markers. In vivo functionality was assessed in independent pre-clinical mouse models. Minimal engraftment was observed following transplantation in mice with acute acetaminophen-induced liver injury. In contrast, upon transplantation in a transgenic mouse model presenting host hepatocyte senescence, widespread engraftment and uncontrolled proliferation of iHEPs was observed, forming islands of epithelial-like cells, adipocyte-like cells, or cells presenting both morphologies. CONCLUSION: The results have significant implications for cell reprogramming, suggesting that iHEPs generated by Foxa2/Hnf4a expression have an unstable phenotype and depend on transgene expression for maintenance of hepatocyte-like characteristics, showing a tendency to return to the mesenchymal phenotype of origin and a compromised safety profile.


Assuntos
Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Reprogramação Celular , Hepatócitos , Fígado , Camundongos , Fenótipo
6.
Am J Pathol ; 186(3): 524-38, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26762581

RESUMO

The interplay between the inflammatory infiltrate and tissue resident cell populations invokes fibrogenesis. However, the temporal and mechanistic contributions of these cells to fibrosis are obscure. To address this issue, liver inflammation, ductular reaction (DR), and fibrosis were induced in C57BL/6 mice by thioacetamide administration for up to 12 weeks. Thioacetamide treatment induced two phases of liver fibrosis. A rapid pericentral inflammatory infiltrate enriched in F4/80(+) monocytes co-localized with SMA(+) myofibroblasts resulted in early collagen deposition, marking the start of an initial fibrotic phase (1 to 6 weeks). An expansion of bone marrow-derived macrophages preceded a second phase, characterized by accelerated progression of fibrosis (>6 weeks) after DR migration from the portal tracts to the centrilobular site of injury, in association with an increase in DR/macrophage interactions. Although chemokine (C-C motif) ligand 2 (CCL2) mRNA was induced rapidly in response to thioacetamide, CCL2 deficiency only partially abrogated fibrosis. In contrast, colony-stimulating factor 1 receptor blockade diminished C-C chemokine receptor type 2 [CCR2(neg) (Ly6C(lo))] monocytes, attenuated the DR, and significantly reduced fibrosis, illustrating the critical role of colony-stimulating factor 1-dependent monocyte/macrophage differentiation and linking the two phases of injury. In response to liver injury, colony-stimulating factor 1 drives early monocyte-mediated myofibroblast activation and collagen deposition, subsequent macrophage differentiation, and their association with the advancing DR, the formation of fibrotic septa, and the progression of liver fibrosis to cirrhosis.


Assuntos
Hepatite Animal/patologia , Cirrose Hepática Experimental/patologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Animais , Quimiocinas/genética , Quimiocinas/metabolismo , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hepatite Animal/genética , Hepatite Animal/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , Fator Estimulador de Colônias de Macrófagos/genética , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Tioacetamida
7.
Hepatology ; 59(4): 1393-405, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24254368

RESUMO

UNLABELLED: Although nonalcoholic fatty liver disease (NAFLD) is conventionally assessed histologically for lobular features of inflammation, development of portal fibrosis appears to be associated with disease progression. We investigated the composition of the portal inflammatory infiltrate and its relationship to the ductular reaction (DR), a second portal phenomenon implicated in fibrogenesis. The portal inflammatory infiltrate may contribute directly to fibrogenesis as well as influence the fate of the DR hepatic progenitor cells (HPCs), regulating the balance between liver repair and fibrosis. The presence of portal inflammation in NAFLD was strongly correlated with disease severity (fibrosis stage) and the DR. The portal infiltrate was characterized by immunostaining NAFLD liver biopsy sections (n = 33) for broad leukocyte subset markers (CD68, CD3, CD8, CD4, CD20, and neutrophil elastase) and selected inflammatory markers (matrix metalloproteinase 9 and interleukin [IL]-17). Cells expressing all markers examined were identified throughout the liver lobules and in portal tracts, although portal tracts were more densely populated (P < 0.01), and dominated by CD68(+) macrophages and CD8(+) lymphocytes, at all stages of disease. An increase in portal macrophages in NAFLD patients with steatosis alone (P < 0.01) was the earliest change detected, even before elevated expression of the proinflammatory cytokines, IL1B and TNF, in patients with early NASH (P < 0.05). Portal and periductal accumulation of all other cell types examined occurred in progressed NASH (all P < 0.05). CONCLUSION: Knowledge of the complex cellular composition of the portal inflammatory infiltrate and HPC/DR niche in NAFLD will shape future functional studies to elucidate the contribution of portal inflammation to HPC differentiation and NAFLD pathogenesis.


Assuntos
Fígado Gorduroso/metabolismo , Ducto Hepático Comum/metabolismo , Hepatopatias Alcoólicas/metabolismo , Sistema Porta/metabolismo , Adulto , Idoso , Biópsia , Estudos de Coortes , Fígado Gorduroso/patologia , Feminino , Ducto Hepático Comum/patologia , Humanos , Interleucina-17/metabolismo , Interleucina-1beta/metabolismo , Fígado/metabolismo , Fígado/patologia , Hepatopatias Alcoólicas/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica , Sistema Porta/patologia , Fator de Necrose Tumoral alfa/metabolismo
8.
Hepatology ; 59(3): 848-57, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24037895

RESUMO

UNLABELLED: The development of portal fibrosis following the iron loading of hepatocytes is the first stage of fibrogenesis in hereditary hemochromatosis. In other chronic liver diseases it has been shown that a ductular reaction (DR) appears early, correlates with fibrosis progression, and is a consequence of activation of an alternative pathway of hepatocyte replication. This study was designed to investigate the presence of the DR in hemochromatosis and describe its associations. Liver biopsies from 63 C282Y homozygous patients were assessed for hepatic iron concentration (HIC) and graded for iron loading, fibrosis stage, steatosis, and inflammation. Immunostaining allowed quantification of the DR, hepatocyte senescence and proliferation, and analysis incorporated clinical data. Hepatocyte senescence was positively correlated with HIC, serum ferritin, and oxidative stress. A DR was demonstrated and occurred prior to histological fibrosis. HIC, age, hepatocyte senescence and proliferation, portal inflammation, and excessive alcohol consumption all had significant associations with the extent of the DR. In multivariate analysis, iron loading, hepatocyte replicative arrest, and portal inflammation remained independently and significantly associated with the DR. Of factors associated with fibrosis progression, the DR (odds ratio [OR] 10.86 P<0.0001) and the presence of portal inflammation (OR 4.31, P=0.028) remained significant after adjustment for cofactors. The extent of the DR regressed following therapeutic venesection. CONCLUSION: Iron loading of hepatocytes leads to impaired replication, stimulating the development of the DR in hemochromatosis and this correlates strongly with hepatic fibrosis. Portal inflammation occurs in hemochromatosis and is independently associated with the DR and fibrosis, and thus its role in this disease should be evaluated further.


Assuntos
Ductos Biliares Intra-Hepáticos/patologia , Senescência Celular/fisiologia , Hemocromatose/genética , Hemocromatose/patologia , Hepatócitos/patologia , Cirrose Hepática/patologia , Adulto , Biópsia , Progressão da Doença , Fígado Gorduroso/patologia , Feminino , Hepatócitos/fisiologia , Humanos , Células de Kupffer/patologia , Fígado/patologia , Masculino , Pessoa de Meia-Idade
9.
Liver Int ; 33(4): 569-79, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23240894

RESUMO

BACKGROUND: Liver macrophages are a heterogeneous cell population that produces factors involved in fibrogenesis and matrix turnover, including matrix metalloproteinase (MMP) -9. During liver injury, their close proximity to hepatic progenitor cells and the ductular reaction may enable them to regulate liver repair and fibrosis. AIMS: To enumerate and characterise liver macrophages in patients with chronic hepatitis C, to determine whether a distinct population of macrophages is associated with the ductular reaction and portal fibrosis. METHODS: Immunostaining for macrophage markers (CD68, CD163, CCR2), the ductular reaction (keratin-7) and MMP-9 was performed in liver biopsy sections from patients with chronic hepatitis C virus (HCV) (n = 85). RESULTS: Portal tracts were more densely populated with macrophages (10.5 ± 0.36 macrophages/HPF) than lobules (7.2 ± 0.16 macrophages/HPF, P < 0.001) and macrophages were found in close proximity to the ductular reaction. ≥30% of portal and periductal macrophages expressed MMP-9 and these were significantly associated with increasing stage of fibrosis (rs  = 0.58, 0.68, respectively, both P < 0.001). In contrast, MMP-9(+) macrophages were largely absent in lobular regions and non-diseased liver. Hepatic MMP-9 mRNA levels and gelatinolytic activity were significantly associated with stage of fibrosis (rs  = 0.47, rs  = 0.89, respectively, both P < 0.001). Furthermore, a second distinct CCR2(+) macrophage population was localised to the centrilobular regions and was predominantly absent from portal and periductal areas. CONCLUSIONS: These findings demonstrate significant regional differences in macrophage phenotypes, suggesting that there are at least two populations of liver macrophages. We propose that these populations have distinct contributions to the pathogenesis of chronic HCV-related liver disease.


Assuntos
Ductos Biliares Intra-Hepáticos/enzimologia , Hepatite C Crônica/enzimologia , Cirrose Hepática/enzimologia , Fígado/enzimologia , Macrófagos/enzimologia , Metaloproteinase 9 da Matriz/análise , Adulto , Idoso , Análise de Variância , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Ductos Biliares Intra-Hepáticos/imunologia , Ductos Biliares Intra-Hepáticos/patologia , Ductos Biliares Intra-Hepáticos/virologia , Biomarcadores/análise , Biópsia , Feminino , Hepatite C Crônica/complicações , Hepatite C Crônica/genética , Hepatite C Crônica/imunologia , Hepatite C Crônica/patologia , Humanos , Imuno-Histoquímica , Queratina-7/análise , Fígado/imunologia , Fígado/patologia , Fígado/virologia , Cirrose Hepática/genética , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Cirrose Hepática/virologia , Macrófagos/imunologia , Masculino , Metaloproteinase 9 da Matriz/genética , Pessoa de Meia-Idade , Fenótipo , RNA Mensageiro/análise , Receptores CCR2/análise , Receptores de Superfície Celular/análise , Índice de Gravidade de Doença , Adulto Jovem
10.
World J Gastroenterol ; 18(15): 1732-44, 2012 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-22553397

RESUMO

AIM: To investigate the influence of macrophages on hepatocyte phenotype and function. METHODS: Macrophages were differentiated from THP-1 monocytes via phorbol myristate acetate stimulation and the effects of monocyte or macrophage-conditioned medium on HepG2 mRNA and protein expression determined. The in vivo relevance of these findings was confirmed using liver biopsies from 147 patients with hepatitis C virus (HCV) infection. RESULTS: Conditioned media from macrophages, but not monocytes, induced a transient morphological change in hepatocytes associated with upregulation of vimentin (7.8 ± 2.5-fold, P = 0.045) and transforming growth factor (TGF)-ß1 (2.6 ± 0.2-fold, P < 0.001) and downregulation of epithelial cadherin (1.7 ± 0.02-fold, P = 0.017) mRNA expression. Microarray analysis revealed significant upregulation of lipocalin-2 (17-fold, P < 0.001) and pathways associated with inflammation, and substantial downregulation of pathways related to hepatocyte function. In patients with chronic HCV, real-time polymerase chain reaction and immunohistochemistry confirmed an increase in lipocalin-2 mRNA (F0 1.0 ± 0.3, F1 2.2 ± 0.2, F2 3.0 ± 9.3, F3/4 4.0 ± 0.8, P = 0.003) and protein expression (F1 1.0 ± 0.5, F2 1.3 ± 0.4, F3/4 3.6 ± 0.4, P = 0.014) with increasing liver injury. High performance liquid chromatography-tandem mass spectrometry analysis identified elevated levels of matrix metalloproteinase (MMP)-9 in macrophage-conditioned medium, and a chemical inhibitor of MMP-9 attenuated the change in morphology and mRNA expression of TGF-ß1 (2.9 ± 0.2 vs 1.04 ± 0.1, P < 0.001) in macrophage-conditioned media treated HepG2 cells. In patients with chronic HCV infection, hepatic mRNA expression of CD163 (F0 1.0 ± 0.2, F1/2 2.8 ± 0.3, F3/4 5.3 ± 1.0, P = 0.001) and MMP-9 (F0 1.0 ± 0.4, F1/2 2.8 ± 0.3, F3/4 4.1 ± 0.8, P = 0.011) was significantly associated with increasing stage of fibrosis. CONCLUSION: Secreted macrophage products alter the phenotype and function of hepatocytes, with increased expression of inflammatory mediators, suggesting that hepatocytes actively participate in liver injury.


Assuntos
Hepatócitos/fisiologia , Mediadores da Inflamação/metabolismo , Macrófagos/fisiologia , Proteínas de Fase Aguda/fisiologia , Antígenos CD/fisiologia , Antígenos de Diferenciação Mielomonocítica/fisiologia , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Lipocalina-2 , Lipocalinas/fisiologia , Cirrose Hepática/metabolismo , Metaloproteinase 9 da Matriz/fisiologia , Fenótipo , Proteínas Proto-Oncogênicas/fisiologia , RNA Mensageiro/análise , Receptores de Superfície Celular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA