Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JAMA Oncol ; 6(9): 1372-1380, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32701148

RESUMO

Importance: For prostate cancer, Gleason grading of the biopsy specimen plays a pivotal role in determining case management. However, Gleason grading is associated with substantial interobserver variability, resulting in a need for decision support tools to improve the reproducibility of Gleason grading in routine clinical practice. Objective: To evaluate the ability of a deep learning system (DLS) to grade diagnostic prostate biopsy specimens. Design, Setting, and Participants: The DLS was evaluated using 752 deidentified digitized images of formalin-fixed paraffin-embedded prostate needle core biopsy specimens obtained from 3 institutions in the United States, including 1 institution not used for DLS development. To obtain the Gleason grade group (GG), each specimen was first reviewed by 2 expert urologic subspecialists from a multi-institutional panel of 6 individuals (years of experience: mean, 25 years; range, 18-34 years). A third subspecialist reviewed discordant cases to arrive at a majority opinion. To reduce diagnostic uncertainty, all subspecialists had access to an immunohistochemical-stained section and 3 histologic sections for every biopsied specimen. Their review was conducted from December 2018 to June 2019. Main Outcomes and Measures: The frequency of the exact agreement of the DLS with the majority opinion of the subspecialists in categorizing each tumor-containing specimen as 1 of 5 categories: nontumor, GG1, GG2, GG3, or GG4-5. For comparison, the rate of agreement of 19 general pathologists' opinions with the subspecialists' majority opinions was also evaluated. Results: For grading tumor-containing biopsy specimens in the validation set (n = 498), the rate of agreement with subspecialists was significantly higher for the DLS (71.7%; 95% CI, 67.9%-75.3%) than for general pathologists (58.0%; 95% CI, 54.5%-61.4%) (P < .001). In subanalyses of biopsy specimens from an external validation set (n = 322), the Gleason grading performance of the DLS remained similar. For distinguishing nontumor from tumor-containing biopsy specimens (n = 752), the rate of agreement with subspecialists was 94.3% (95% CI, 92.4%-95.9%) for the DLS and similar at 94.7% (95% CI, 92.8%-96.3%) for general pathologists (P = .58). Conclusions and Relevance: In this study, the DLS showed higher proficiency than general pathologists at Gleason grading prostate needle core biopsy specimens and generalized to an independent institution. Future research is necessary to evaluate the potential utility of using the DLS as a decision support tool in clinical workflows and to improve the quality of prostate cancer grading for therapy decisions.


Assuntos
Interpretação de Imagem Assistida por Computador , Gradação de Tumores/normas , Neoplasias da Próstata/diagnóstico , Adolescente , Adulto , Algoritmos , Inteligência Artificial , Biópsia com Agulha de Grande Calibre/métodos , Aprendizado Profundo , Humanos , Masculino , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/patologia , Manejo de Espécimes , Estados Unidos/epidemiologia , Adulto Jovem
2.
Nat Med ; 25(9): 1453-1457, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406351

RESUMO

The microscopic assessment of tissue samples is instrumental for the diagnosis and staging of cancer, and thus guides therapy. However, these assessments demonstrate considerable variability and many regions of the world lack access to trained pathologists. Though artificial intelligence (AI) promises to improve the access and quality of healthcare, the costs of image digitization in pathology and difficulties in deploying AI solutions remain as barriers to real-world use. Here we propose a cost-effective solution: the augmented reality microscope (ARM). The ARM overlays AI-based information onto the current view of the sample in real time, enabling seamless integration of AI into routine workflows. We demonstrate the utility of ARM in the detection of metastatic breast cancer and the identification of prostate cancer, with latency compatible with real-time use. We anticipate that the ARM will remove barriers towards the use of AI designed to improve the accuracy and efficiency of cancer diagnosis.


Assuntos
Inteligência Artificial , Neoplasias da Mama/diagnóstico , Neoplasias/diagnóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Mama/patologia , Feminino , Humanos , Masculino , Microscopia/métodos , Estadiamento de Neoplasias , Neoplasias/patologia , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA