Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Food Sci ; 2024: 6131664, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39310801

RESUMO

New research is exploring the enhanced efficacy of antioxidant and antimicrobial compounds developed from Opuntia dillenii flowers, a multifaceted source with pharmacological effects such as antioxidant and microbicide activity indexes showing diverse medical capabilities. The purpose of this study was to determine the chemical composition, isolate the active compounds, and evaluate their antioxidant properties as well as antibacterial potential through HPLC-MS in flower extract from Opuntia dillenii. The extracts were analyzed by high-performance liquid chromatography (HPLC), and essential oil compounds were identified by gas chromatography (GC). Antioxidant properties were assessed using DPPH and ferric-reducing power (FRAP) assays. Antibacterial potential was evaluated using disk diffusion and microdilution methods. Nutritional studies of the flower indicated that it contained moderate levels of sugars (4.27% ± 0.240), proteins (1.913% ± 0.268), and microelements (potassium as a major element), sodium, and calcium, with concentration values of 2.267%, 0.55%, and 0.424%, respectively. Total phenolic content ranged from 1.61 ± 0.37 mg GAE/g (hexane extract) to 34.45 ± 0.42 mg GAE/g (ethanol extract). The study highlighted the richness of secondary metabolites, such as methylated flavonoids (quercetin 3-O-rutinoside, isorhamnetin-3-O-rutinoside, and isorhamnetin-3-O-glucoside), and identified essential oil compounds like trimethylsilyl hexadecenoate, squalene, gamma-eudesmol, and citronellol. Antioxidant activities revealed stronger activity in the butanolic extract, while isorhamnetin-3-O-rutinoside exhibited moderate antioxidant effects. These results provide the rationale for the potential incorporation of Opuntia dillenii flower extracts in food, cosmetics, and pharmaceutical products as a sustainable natural alternative with broad implications for human health.

2.
Molecules ; 28(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36985768

RESUMO

BACKGROUND: The genus Cistus L. (Cistaceae) includes several medicinal plants growing wild in the Moroccan area. Acne vulgaris (AV) is a chronic skin disorder treated with topical and systemic therapies that often lead to several side effects in addition to the development of antimicrobial resistance. Our study aimed to investigate the bioactivity of extracts of two Moroccan Cistus species, Cistus laurifolius L. and Cistus salviifolius L., in view of their use as potential coadjuvants in the treatment of mild acne vulgaris. METHODS: Targeted phytochemical profiles obtained by HPLC-DAD and HPLC-ESI/MS analyses and biological activities ascertained by several antioxidants in vitro chemical and cell-based assays of the leaf extracts. Moreover, antimicrobial activity against Gram-positive and Gram-negative bacteria, and Candida albicans was evaluated. RESULTS: Analyses revealed the presence of several polyphenols in the studied extracts, mainly flavonoids and tannins. Cistus laurifolius L. and Cistus salviifolius L. possessed good biological properties and all extracts showed antibacterial activity, particularly against Staphylococcus aureus, S. epidermidis, and Propionibacterium acnes, identified as the main acne-causing bacteria. CONCLUSION: The results suggest that examined extracts are promising agents worthy of further studies to develop coadjuvants/natural remedies for mild acne treatment.


Assuntos
Acne Vulgar , Cistus , Cistus/química , Antibacterianos , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Inflamatórios/farmacologia , Compostos Fitoquímicos/farmacologia , Acne Vulgar/tratamento farmacológico , Acne Vulgar/microbiologia , Testes de Sensibilidade Microbiana
3.
Molecules ; 27(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235295

RESUMO

Plant saponins are abundant and diverse natural products with a great potential for use in drug-discovery research. Here, we evaluated extracts of saponins-rich fractions of argan leaves and argan oil extraction byproducts (shell, pulp, press cake) for their effect on melanogenesis. Results show that from among the samples tested, only the saponins-rich fraction from leaves (ALS) inhibited melanin production in B16 murine melanoma (B16) cells. The mechanism of the melanogenesis inhibition was elucidated by determining the protein and mRNA expression of melanogenesis-associated enzymes tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT), and microphthalmia-associated transcription factor (MITF), and performing DNA microarray analysis. Results showed that 10 µg/mL ALS significantly inhibited melanogenesis in B16 cells and human epidermal melanocytes by 59% and 48%, respectively, without cytotoxicity. The effect of ALS on melanogenesis can be attributed to the decrease in TYR, TRP1, and MITF expression at the protein and mRNA levels. MITF inhibition naturally led to the downregulation of the expression of Tyr and Trp1 genes. Results of the DNA microarray analysis revealed the effect on melanogenesis-associated cAMP and Wnt signaling pathways' genes. The results of this study suggest that ALS may be used in cosmeceuticals preparations for hyperpigmentation treatment.


Assuntos
Esclerose Lateral Amiotrófica , Cosmecêuticos , Melanoma Experimental , Saponinas , Sapotaceae , Esclerose Lateral Amiotrófica/metabolismo , Animais , Cosmecêuticos/farmacologia , DNA/metabolismo , Humanos , Melaninas , Melanócitos/metabolismo , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , RNA Mensageiro/metabolismo , Saponinas/metabolismo , Saponinas/farmacologia , Sapotaceae/metabolismo
4.
Nutrients ; 13(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34444857

RESUMO

The beneficial effect on health of argan oil is recognized worldwide. We have previously reported that the cake that remains after argan oil extraction (argan press-cake or APC) inhibits melanogenesis in B16 melanoma cells in a time-dependent manner without cytotoxicity. In this study, the global gene expression profile of B16 melanoma cells treated with APC extract was determined in order to gain an understanding of the possible mechanisms of action of APC. The results suggest that APC extract inhibits melanin biosynthesis by down-regulating microphthalmia-associated transcription factor (Mitf) and its downstream signaling pathway through JNK signaling activation, and the inhibition of Wnt/ß-catenin and cAMP/PKA signaling pathways. APC extract also prevented the transport of melanosomes by down-regulating Rab27a expression. These results suggest that APC may be an important natural skin whitening product and pharmacological agent used for clinical treatment of pigmentary disorders.


Assuntos
Fármacos Dermatológicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Extratos Vegetais/farmacologia , Sapotaceae , Neoplasias Cutâneas/tratamento farmacológico , Animais , Regulação para Baixo/efeitos dos fármacos , Melanossomas/efeitos dos fármacos , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas rab27 de Ligação ao GTP/metabolismo
5.
Molecules ; 26(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445748

RESUMO

The use of natural products for the regulation of skin pigmentation is gaining popularity. In the present study, we evaluated the effect of argan leaves extract (ALE) on melanogenesis in B16 melanoma cells, determined its antioxidant activity, then quantified and identified its phenolic components. B16 cells were treated with various concentrations of ALE, then the cell viability and proliferation were assessed using MTT assay while the melanin content was determined using spectrophotometric methods. The expression level of tyrosinase (TYR), tyrosinase related protein-1 (TRP-1) and dopachrome tautomerase (DCT) was evaluated by Western blotting. The antioxidant activity of ALE was investigated using four different assays while UPLC-ESI-HRMS analysis was used to characterize the ALE phenolic profile. Fourteen phenolic compounds were identified, of which six are reported for the first time to be present in ALE. ALE treatment increases the melanin content of B16 cells in a dose-dependent manner without cytotoxicity. This was revealed by the observed ALE-increased expression level of TYR, DCT, and TRP-1. These bioactivities may be mainly attributed to its high flavonoids content. Argan leaves have the potential for use as a treatment for hypopigmentation disorders and as a bioactive component of cosmetic products that aim to increase pigmentation.


Assuntos
Antioxidantes/farmacologia , Melaninas/biossíntese , Fenóis/análise , Folhas de Planta/química , Sapotaceae/química , Espectrometria de Massas por Ionização por Electrospray , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Oxirredutases Intramoleculares/metabolismo , Melanoma Experimental/patologia , Camundongos , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/metabolismo
6.
Aging (Albany NY) ; 13(2): 1671-1685, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33471781

RESUMO

Cuminaldehyde (CA) is one of the major compounds of the essential oil of Cuminum cyminum. The aim of this study was to evaluate the effects of CA on aging, specifically on spatial learning and memory. To achieve our objective, an in vitro study on SH-SY5Y cells was performed to analyze the neuroprotective effect of CA against dexamethasone using the MTT assay. An in vivo study was performed for evaluation of the spatial learning and memory using Morris water maze (MWM). RT-PCR was performed to quantify the expression of specific genes (Bdnf, Icam and ApoE) in the mice brain. The results obtained showed a neuroprotective effect of CA against dexamethasone-induced neuronal toxicity. The escape latency of CA-treated aged mice was significantly decreased as compared to the water-treated aged mice after 4 days of training in MWM. Moreover, CA treatment up-regulated the gene expression of Bdnf, Icam and ApoE, while it down-regulated the gene expression of IL-6. These findings suggest that CA has a neuroprotective effect, as well as a spatial learning and memory enhancement potential through the modulation of genes coding for neurotrophic factors and/or those implicated in the imbalance of neural circuitry and impairment of synaptic plasticity. Cuminaldehyde (CA) is one of the major compound of the essential oil of Cuminum cyminum. The aim of this study was to evaluate the effects of CA on aging, specifically on spatial learning and memory. To achieve our objective, an in vitro study on SH-SY5Y cells was performed to analyze the neuroprotective effect of CA against dexamethasone using the MTT assay. An in vivo study was performed for evaluation of the spatial learning and memory using Morris water maze (MWM). RT-PCR was performed to quantify the expression of specific genes (Bdnf, Icam and ApoE) in the mice brain. The results obtained showed a neuroprotective effect of CA against dexamethasone-induced neuronal toxicity. The escape latency of CA-treated aged mice was significantly decreased as compared to the water-treated aged mice after 4 days of training in MWM. Moreover, CA treatment up-regulated the gene expression of Bdnf, Icam and ApoE, while it down-regulated the gene expression of IL-6. These findings suggest that CA has a neuroprotective effect, as well as a spatial learning and memory enhancement potential through the modulation of genes coding for neurotrophic factors and/or those implicated in the imbalance of neural circuitry and impairment of synaptic plasticity.


Assuntos
Envelhecimento/metabolismo , Benzaldeídos/administração & dosagem , Cimenos/administração & dosagem , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Memória Espacial/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Dieta , Dopamina/metabolismo , Epinefrina/metabolismo , Humanos , Interleucina-6/metabolismo , Camundongos , Atividade Motora/efeitos dos fármacos , Norepinefrina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Int J Mol Sci ; 21(7)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268492

RESUMO

We have previously reported that argan oil and argan press-cake from the kernels of Argania spinosa have an anti-melanogenesis effect. Here, the effect of argan fruit shell ethanol extract (AFSEE) on melanogenesis in B16F10 cells was determined, and the mechanism underlying its effect was elucidated. The proliferation of AFSEE-treated B16F10 cells was evaluated using the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, while the melanin content was quantified using a spectrophotometric method. The expression of melanogenesis-related proteins was determined by Western blot and real-time PCR, while global gene expression was determined using a DNA microarray. In vitro analysis results showed that the melanin content of B16F10 cells was significantly increased by AFSEE, without cytotoxicity, by increasing the melanogenic enzyme tyrosinase (TRY), tyrosinase related-protein 1 (TRP1), and dopachrome tautomerase (DCT) protein and mRNA expression, as well as upregulating microphthalmia-associated transcription factor (MITF) expression through mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase (ERK) and p38, and the cyclic adenosine monophosphate (cAMP) signaling pathway, as indicated by the microarray analysis results. AFSEE's melanogenesis promotion effect is primarily attributed to its polyphenolic components. In conclusion, AFSEE promotes melanogenesis in B16F10 cells by upregulating the expression of the melanogenic enzymes through the cAMP-MITF signaling pathway.AFSEE may be used as a cosmetics product component to promote melanogenesis, or as a therapeutic against hypopigmentation disorders.


Assuntos
AMP Cíclico/metabolismo , Frutas/química , Melaninas/biossíntese , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Sapotaceae/química , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Melanoma Experimental , Camundongos , Fosforilação , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
8.
Int J Mol Sci ; 20(14)2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330819

RESUMO

Lippia citriodora ethanolic extract (VEE) and verbascoside (Vs), a phenypropanoid glycoside, have been demonstrated to exert relaxant and anxiolytic properties. However, the molecular mechanisms behind their effects are still unclear. In this work, we studied the effects and action mechanisms of VEE and Vs in vivo and in vitro, on human neurotypic SH-SY5Y cells.TST was conducted on mice treated orally with VEE (25, 50 and 100 mg/Kg), Vs (2.5 and 5 mg/Kg), Bupropion (20 mg/Kg) and Milli-Q water. Higher dose of VEE-treated mice showed an increase of immobility time compared to control groups, indicating an induction of relaxation. This effect was found to be induced by regulation of genes playing key roles in calcium homeostasis (calcium channels), cyclic AMP (cAMP) production and energy metabolism. On the other hand, low doses of VEE and Vs showed an antidepressant-like effect and was confirmed by serotonin, noradrenalin, dopamine and BDNF expressions. Finally, VEE and Vsenhancedcell viability, mitochondrial activity and calcium uptake in vitro confirming in vivo findings. Our results showed induction of relaxation and antidepressant-like effects depending on the administered dose of VEE and Vs, through modulation of cAMP and calcium.


Assuntos
Antidepressivos/química , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Lippia/química , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Animais , Cálcio/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Depressão/metabolismo , Humanos , Masculino , Camundongos
9.
Cytotechnology ; 70(5): 1389-1397, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29946948

RESUMO

Oil extraction from the kernels of Argania spinosa (L.) Skeels (Sapotaceae), an endemic tree of Morocco, produces argan press-cake (APC) used as a shampoo and to treat sprains, scabies, and for healing wounds. We have previously reported that argan oil has antimelanogenesis effect. Here, we determined if the by-product, APC, has melanogenesis regulatory effect using B16 murine melanoma cells. The effect of APC ethanol extract on cell proliferation and melanin content of B16 cells were measured, and to elucidate the mechanism involved, the expression level of melanogenic enzymes tyrosinase (TYR), dopachrome tautomerase (DCT), and tyrosinase-related protein 1 (TRP1) were determined and mRNA expression level of microphthalmia- associated transcription factor (Mitf) and Tyr genes were quantified. APC ethanol extract showed a significant melanin biosynthesis inhibitory effect on B16 cells in a time-dependent manner without cytotoxicity, which could be due to the decreased expression of TYR, TRP1, and DCT in a time-dependent manner. APC extract down regulated Mitf and Tyr. Decreased TRP1 and DCT levels could be due to post-translational modifications. These results suggest that APC extract may be used as a new source of natural whitening products and may be introduced as an important pharmacological agent for the treatment of hyperpigmentation disorders.

10.
Food Chem ; 246: 457-463, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29291873

RESUMO

In this study, we formulated and stabilized oil-in-water nanoemulsions using a crude extract from argan press-cake as sole emulsifier. Various extracts from argan press-cake were prepared in order to select the most surface-active one(s) foreseeing emulsions preparation. Fifty percent (v/v) ethanolic extract reduced the interfacial tension to a minimum value at both MCT oil and soybean oil interfaces (12.7 and 10.5 mN m-1 respectively). This extract was also effective at producing fine emulsions with small droplet sizes (d3,2 < 115 nm) and good physical stability using different oils such as soybean oil, MCT oil and fish oil and at conventional homogenization conditions (100 MPa for 4 passes). On the other hand, the emulsions were very sensitive to NaCl addition (≥25 mM) and to acidic pH (<3) indicating that the main stabilization mechanism is electrostatic, likely due to the presence of surface-active compounds with ionizable groups such as saponins.


Assuntos
Emulsões/química , Óleos de Plantas/química , Emulsificantes/química , Óleos de Peixe/química , Nanoestruturas/química , Saponinas/química , Cloreto de Sódio/química , Óleo de Soja/química , Tensão Superficial , Água/química
11.
Artigo em Inglês | MEDLINE | ID: mdl-23935660

RESUMO

Argan (Argania spinosa L.) oil has been used for centuries in Morocco as cosmetic oil to maintain a fair complexion and to cure skin pimples and chicken pox pustules scars. Although it is popular, the scientific basis for its effect on the skin has not yet been established. Here, the melanogenesis regulatory effect of argan oil was evaluated using B16 murine melanoma cells. Results of melanin assay using B16 cells treated with different concentrations of argan oil showed a dose-dependent decrease in melanin content. Western blot results showed that the expression levels of tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT) proteins were decreased. In addition, there was an increase in the activation of MITF and ERK1/2. Real-time PCR results revealed a downregulation of Tyr, Trp1, Dct, and Mitf mRNA expressions. Argan oil treatment causes MITF phosphorylation which subsequently inhibited the transcription of melanogenic enzymes, TYR and DCT. The inhibitory effect of argan oil on melanin biosynthesis may be attributed to tocopherols as well as the synergistic effect of its components. The results of this study provide the scientific basis for the traditionally established benefits of argan oil and present its therapeutic potential against hyperpigmentation disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA