Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurotrauma ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235436

RESUMO

The past decade has seen impressive advances in neuroimaging, moving from qualitative to quantitative outputs. Available techniques now allow for the inference of microscopic changes occurring in white and gray matter, along with alterations in physiology and function. These existing and emerging techniques hold the potential of providing unprecedented capabilities in achieving a diagnosis and predicting outcomes for traumatic brain injury (TBI) and a variety of other neurological diseases. To see this promise move from the research lab into clinical care, an understanding is needed of what normal data look like for all age ranges, sex, and other demographic and socioeconomic categories. Clinicians can only use the results of imaging scans to support their decision-making if they know how the results for their patient compare with a normative standard. This potential for utilizing magnetic resonance imaging (MRI) in TBI diagnosis motivated the American College of Radiology and Cohen Veterans Bioscience to create a reference database of healthy individuals with neuroimaging, demographic data, and characterization of psychological functioning and neurocognitive data that will serve as a normative resource for clinicians and researchers for development of diagnostics and therapeutics for TBI and other brain disorders. The goal of this article is to introduce the large, well-curated Normative Neuroimaging Library (NNL) to the research community. NNL consists of data collected from ∼1900 healthy participants. The highlights of NNL are (1) data are collected across a diverse population, including civilians, veterans, and active-duty service members with an age range (18-64 years) not well represented in existing datasets; (2) comprehensive structural and functional neuroimaging acquisition with state-of-the-art sequences (including structural, diffusion, and functional MRI; raw scanner data are preserved, allowing higher quality data to be derived in the future; standardized imaging acquisition protocols across sites reflect sequences and parameters often recommended for use with various neurological and psychiatric conditions, including TBI, post-traumatic stress disorder, stroke, neurodegenerative disorders, and neoplastic disease); and (3) the collection of comprehensive demographic details, medical history, and a broad structured clinical assessment, including cognition and psychological scales, relevant to multiple neurological conditions with functional sequelae. Thus, NNL provides a demographically diverse population of healthy individuals who can serve as a comparison group for brain injury study and clinical samples, providing a strong foundation for precision medicine. Use cases include the creation of imaging-derived phenotypes (IDPs), derivation of reference ranges of imaging measures, and use of IDPs as training samples for artificial intelligence-based biomarker development and for normative modeling to help identify injury-induced changes as outliers for precision diagnosis and targeted therapeutic development. On its release, NNL is poised to support the use of advanced imaging in clinician decision support tools, the validation of imaging biomarkers, and the investigation of brain-behavior anomalies, moving the field toward precision medicine.

2.
Stem Cell Reports ; 13(2): 254-261, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31378671

RESUMO

Four boys with Pelizaeus-Merzbacher disease, an X-linked leukodystrophy, underwent transplantation with human allogeneic central nervous system stem cells (HuCNS-SC). Subsequently, all subjects were followed for an additional 4 years in this separate follow-up study to evaluate safety, neurologic function, magnetic resonance imaging (MRI) data, and immunologic response. The neurosurgical procedure, immunosuppression, and HuCNS-SC transplantation were well tolerated and all four subjects were alive at the conclusion of the study period. At year 2, all subjects exhibited diffusion MRI changes at the implantation sites as well as in more distant brain regions. There were persistent, increased signal changes in the three patients who were studied up to year 5. Two of four subjects developed donor-specific HLA alloantibodies, demonstrating that neural stem cells can elicit an immune response when injected into the CNS, and suggesting the importance of monitoring immunologic parameters and identifying markers of engraftment in future studies.


Assuntos
Encéfalo/diagnóstico por imagem , Células-Tronco Neurais/transplante , Doença de Pelizaeus-Merzbacher/terapia , Encéfalo/fisiologia , Pré-Escolar , Seguimentos , Antígenos HLA/imunologia , Humanos , Lactente , Isoanticorpos/sangue , Imageamento por Ressonância Magnética , Masculino , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Doença de Pelizaeus-Merzbacher/imunologia , Doença de Pelizaeus-Merzbacher/patologia , Índice de Gravidade de Doença , Transplante de Células-Tronco/efeitos adversos , Transplante Homólogo , Resultado do Tratamento
3.
Neurosurgery ; 82(4): 562-575, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28541431

RESUMO

BACKGROUND: Human central nervous system stem cells (HuCNS-SC) are multipotent adult stem cells with successful engraftment, migration, and region-appropriate differentiation after spinal cord injury (SCI). OBJECTIVE: To present data on the surgical safety profile and feasibility of multiple intramedullary perilesional injections of HuCNS-SC after SCI. METHODS: Intramedullary free-hand (manual) transplantation of HuCNS-SC cells was performed in subjects with thoracic (n = 12) and cervical (n = 17) complete and sensory incomplete chronic traumatic SCI. RESULTS: Intramedullary stem cell transplantation needle times in the thoracic cohort (20 M HuCNS-SC) were 19:30 min and total injection time was 42:15 min. The cervical cohort I (n = 6), demonstrated that escalating doses of HuCNS-SC up to 40 M range were well tolerated. In cohort II (40 M, n = 11), the intramedullary stem cell transplantation needle times and total injection time was 26:05 ± 1:08 and 58:14 ± 4:06 min, respectively. In the first year after injection, there were 4 serious adverse events in 4 of the 12 thoracic subjects and 15 serious adverse events in 9 of the 17 cervical patients. No safety concerns were considered related to the cells or the manual intramedullary injection. Cervical magnetic resonance images demonstrated mild increased T2 signal change in 8 of 17 transplanted subjects without motor decrements or emerging neuropathic pain. All T2 signal change resolved by 6 to 12 mo post-transplant. CONCLUSION: A total cell dose of 20 M cells via 4 and up to 40 M cells via 8 perilesional intramedullary injections after thoracic and cervical SCI respectively proved safe and feasible using a manual injection technique.


Assuntos
Células-Tronco Neurais/transplante , Traumatismos da Medula Espinal/cirurgia , Transplante de Células-Tronco/métodos , Adulto , Medula Cervical/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medula Espinal/cirurgia , Transplante de Células-Tronco/efeitos adversos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA