Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mycologia ; 115(6): 787-801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37903077

RESUMO

A Fusarium species associated with sunflower based on multilocus genealogy, morphological, physiological, ecological, mating type, and mycotoxin production data is formally described as the newly discovered species Fusarium bilaiae. The F. bilaiae strains formed a genealogically exclusive lineage within the African clade of the F. fujikuroi species complex. Comparison of morphological characteristics of F. bilaiae strains with those of the closely related F. phyllophilum strain NRRL 13617 revealed similarities in the main micromorphology of both species: production of numerous one-celled microconidia in false heads and short chains on monophialides and polyphialides and the absence of macroconidia and sporodochia. There was a slight but significant distinction between the two species when the strains were grown on different agar media, as well as in the shape and width of microconidia. Fusarium bilaiae strains isolated from symptomatic sunflower were not pathogenic to members of the Asteraceae tested; apparently, they live as saprophytes or endophytes in sunflower tissues. A difference between the strains of the two species in the production of mycotoxins was demonstrated with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis. On autoclaved rice, F. bilaiae did not produce fumonisins and beauvericin but produced moniliformin, whereas F. phyllophilum produced all these mycotoxins. A polymerase chain reaction (PCR) assay specific for mating type alleles identified F. bilaiae as a putative heterothallic species with MAT1-1 and MAT1-2 idiomorphs, but laboratory crosses were unsuccessful. Determining the area and host range of the new endophytic species F. bilaiae is a priority for future research.


Assuntos
Asteraceae , Fusarium , Helianthus , Micotoxinas , Fusarium/genética , Espectrometria de Massas em Tandem
2.
Phytopathology ; 111(7): 1064-1079, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33200960

RESUMO

Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.


Assuntos
Fusarium , Fusarium/genética , Filogenia , Doenças das Plantas , Plantas
3.
Chem Biodivers ; 13(7): 891-903, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27253722

RESUMO

The compositions of volatile organic compounds (VOCs) emitted by Fusarium fungi (F. langsethiae, F. sibiricum, F. poae, and F. sporotrichioides) grown on two nutritive substrates: potato sucrose agar (PSA) and autoclaved wheat kernels (WK) were investigated. The culturing of fungi and study of their VOC emissions were performed in chromatographic vials at room temperature (23 - 24 °C) and the VOCs were sampled by a solid-phase microextraction on a 85 µm carboxen/polydimethylsiloxane fiber. GC/MS was performed using a 60-m HP-5 capillary column. Components of the VOC mixture were identified by electron impact mass spectra and chromatographic retention indices (RIs). The most abundant components of the VOC mixture emitted by Fusarium fungi are EtOH, AcOH, (i) BuOH, 3-methylbutan-1-ol, 2-methylbutan-1-ol, ethyl 3-methylbutanoate, terpenes with M 136, sesquiterpenes with M 204 (a total of about 25), and trichodiene. It was found that the strains grown on PSA emit a wider spectrum and larger amount of VOCs compared with those grown on wheat kernels. F. langsethiae strain is the most active VOC producer on both substrates. The use of SPME and GC/MS also offers the potential for differentiation of fungal species and strains.


Assuntos
Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Gases/análise , Compostos Orgânicos Voláteis/análise , Ágar/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Gases/química , Gases/metabolismo , Sementes/metabolismo , Solanum tuberosum/química , Microextração em Fase Sólida , Sacarose/metabolismo , Triticum , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA