Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(2): e0008923, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36700640

RESUMO

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Assuntos
Pesquisa , Virologia , Viroses , Humanos , COVID-19/prevenção & controle , Disseminação de Informação , Pandemias/prevenção & controle , Formulação de Políticas , Pesquisa/normas , Pesquisa/tendências , SARS-CoV-2 , Virologia/normas , Virologia/tendências , Viroses/prevenção & controle , Viroses/virologia , Vírus
2.
mBio ; 14(1): e0018823, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36700642

RESUMO

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Assuntos
COVID-19 , Infecções Respiratórias , Vírus , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , Vírus/genética
3.
mSphere ; 8(2): e0003423, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36700653

RESUMO

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Assuntos
COVID-19 , Vírus , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , Antivirais
4.
mBio ; 13(6): e0244622, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36255240

RESUMO

As a result of the ongoing virus-host arms race, viruses have evolved numerous immune subversion strategies, many of which are aimed at suppressing the production of type I interferons (IFNs). Apoptotic caspases have recently emerged as important regulators of type I IFN signaling both in noninfectious contexts and during viral infection. Despite being widely considered antiviral factors since they can trigger cell death, several apoptotic caspases promote viral replication by suppressing innate immune response. Indeed, we previously discovered that the AIDS-associated oncogenic gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) exploits caspase activity to suppress the antiviral type I IFN response and promote viral replication. However, the mechanism of this novel viral immune evasion strategy is poorly understood, particularly with regard to how caspases antagonize IFN signaling during KSHV infection. Here, we show that caspase activity inhibits the DNA sensor cGAS during KSHV lytic replication to block type I IFN induction. Furthermore, we used single-cell RNA sequencing to reveal that the potent antiviral state conferred by caspase inhibition is mediated by an exceptionally small percentage of IFN-ß-producing cells, thus uncovering further complexity of IFN regulation during viral infection. Collectively, these results provide insight into multiple levels of cellular type I IFN regulation that viruses co-opt for immune evasion. Unraveling these mechanisms can inform targeted therapeutic strategies for viral infections and reveal cellular mechanisms of regulating interferon signaling in the context of cancer and chronic inflammatory diseases. IMPORTANCE Type I interferons are key factors that dictate the outcome of infectious and inflammatory diseases. Thus, intricate cellular regulatory mechanisms are in place to control IFN responses. While viruses encode their own immune-regulatory proteins, they can also usurp existing cellular interferon regulatory functions. We found that caspase activity during lytic infection with the AIDS-associated oncogenic gammaherpesvirus Kaposi's sarcoma-associated herpesvirus inhibits the DNA sensor cGAS to block the antiviral type I IFN response. Moreover, single-cell RNA sequencing analyses unexpectedly revealed that an exceptionally small subset of infected cells (<5%) produce IFN, yet this is sufficient to confer a potent antiviral state. These findings reveal new aspects of type I IFN regulation and highlight caspases as a druggable target to modulate cGAS activity.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por Herpesviridae , Herpesvirus Humano 8 , Interferon Tipo I , Humanos , Antivirais , Caspases , Herpesvirus Humano 8/fisiologia , Nucleotidiltransferases , Replicação Viral , Proteínas de Membrana/metabolismo
5.
Curr Res Virol Sci ; 2: 100015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34786565

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is responsible for the current pandemic coronavirus disease of 2019 (COVID-19). Like other pathogens, SARS-CoV-2 infection can elicit production of the type I and III interferon (IFN) cytokines by the innate immune response. A rapid and robust type I and III IFN response can curb viral replication and improve clinical outcomes of SARS-CoV-2 infection. To effectively replicate in the host, SARS-CoV-2 has evolved mechanisms for evasion of this innate immune response, which could also modulate COVID-19 pathogenesis. In this review, we discuss studies that have reported the identification and characterization of SARS-CoV-2 proteins that inhibit type I IFNs. We focus especially on the mechanisms of nsp1 and ORF6, which are the two most potent and best studied SARS-CoV-2 type I IFN inhibitors. We also discuss naturally occurring mutations in these SARS-CoV-2 IFN antagonists and the impact of these mutations in vitro and on clinical presentation. As SARS-CoV-2 continues to spread and evolve, researchers will have the opportunity to study natural mutations in IFN antagonists and assess their role in disease. Additional studies that look more closely at previously identified antagonists and newly arising mutants may inform future therapeutic interventions for COVID-19.

6.
Virol J ; 18(1): 218, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749760

RESUMO

Toll-like receptors (TLRs) control anti-viral responses both directly in infected cells and in responding cells of the immune systems. Therefore, they are crucial for responses against the oncogenic γ-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the related murine virus MHV68, which directly infect immune system cells. However, since these viruses also cause lifelong persistent infections, TLRs may also be involved in modulation of inflammation during latent infection and contribute to virus-driven tumorigenesis. This review summarizes work on both of these aspects of TLR/γ-herpesvirus interactions, as well as results showing that TLR activity can drive these viruses' re-entry into the replicative lytic cycle.


Assuntos
Infecções por Vírus Epstein-Barr , Infecções por Herpesviridae , Herpesvirus Humano 8 , Animais , Antivirais , Herpesvirus Humano 4 , Camundongos , Receptores Toll-Like , Latência Viral , Replicação Viral
7.
Tumour Virus Res ; 12: 200223, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34153523

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) was discovered 27 years ago and its link to several pathologies - Kaposi's sarcoma, primary effusion lymphoma, and the B cell variant of Multicentric Castleman disease - is now well established. However, many questions remain about how KSHV causes tumors. Here, I will review studies from the last few years (primarily 2019-2021) that report new information about KSHV biology and tumorigenesis, including new results about KSHV proteins implicated in tumorigenesis, genetic and environmental variability in KSHV-related tumor development, and potential vulnerabilities of KSHV-caused tumors that could be novel therapeutic targets.


Assuntos
Hiperplasia do Linfonodo Gigante , Herpesvirus Humano 8 , Linfoma de Efusão Primária , Sarcoma de Kaposi , Transformação Celular Neoplásica , Humanos
8.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32321802

RESUMO

Influenza A virus (IAV) increases the presentation of class I human leukocyte antigen (HLA) proteins that limit antiviral responses mediated by natural killer (NK) cells, but molecular mechanisms for these processes have not yet been fully elucidated. We observed that infection with A/Fort Monmouth/1/1947(H1N1) IAV significantly increased the presentation of HLA-B, -C, and -E on lung epithelial cells. Virus entry was not sufficient to induce HLA upregulation because UV-inactivated virus had no effect. Aberrant internally deleted viral RNAs (vRNAs) known as mini viral RNAs (mvRNAs) and defective interfering RNAs (DI RNAs) expressed from an IAV minireplicon were sufficient for inducing HLA upregulation. These defective RNAs bind to retinoic acid-inducible gene I (RIG-I) and initiate mitochondrial antiviral signaling (MAVS) protein-dependent antiviral interferon (IFN) responses. Indeed, MAVS was required for HLA upregulation in response to IAV infection or ectopic mvRNA/DI RNA expression. The effect was partially due to paracrine signaling, as we observed that IAV infection or mvRNA/DI RNA-expression stimulated production of IFN-ß and IFN-λ1 and conditioned media from these cells elicited a modest increase in HLA surface levels in naive epithelial cells. HLA upregulation in response to aberrant viral RNAs could be prevented by the Janus kinase (JAK) inhibitor ruxolitinib. While HLA upregulation would seem to be advantageous to the virus, it is kept in check by the viral nonstructural 1 (NS1) protein; we determined that NS1 limits cell-intrinsic and paracrine mechanisms of HLA upregulation. Taken together, our findings indicate that aberrant IAV RNAs stimulate HLA presentation, which may aid viral evasion of innate immunity.IMPORTANCE Human leukocyte antigens (HLAs) are cell surface proteins that regulate innate and adaptive immune responses to viral infection by engaging with receptors on immune cells. Many viruses have evolved ways to evade host immune responses by modulating HLA expression and/or processing. Here, we provide evidence that aberrant RNA products of influenza virus genome replication can trigger retinoic acid-inducible gene I (RIG-I)/mitochondrial antiviral signaling (MAVS)-dependent remodeling of the cell surface, increasing surface presentation of HLA proteins known to inhibit the activation of an immune cell known as a natural killer (NK) cell. While this HLA upregulation would seem to be advantageous to the virus, it is kept in check by the viral nonstructural 1 (NS1) protein, which limits RIG-I activation and interferon production by the infected cell.


Assuntos
Genes MHC Classe I/genética , Antígenos HLA/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína DEAD-box 58/genética , Bases de Dados Genéticas , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Imunidade Inata , Vírus da Influenza A/genética , Influenza Humana/genética , Células Matadoras Naturais/metabolismo , Pulmão/virologia , RNA Viral/genética , Transdução de Sinais , Ativação Transcricional , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
10.
Viruses ; 11(8)2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382485

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi's sarcoma and other aggressive AIDS-associated malignancies, encodes over 90 genes, most of which are expressed only during the lytic replication cycle. The role of many of the KSHV lytic proteins in the KSHV replication cycle remains unknown, and many proteins are annotated based on known functions of homologs in other herpesviruses. Here we investigate the role of the previously uncharacterized KSHV lytic protein ORF42, a presumed tegument protein. We find that ORF42 is dispensable for reactivation from latency but is required for efficient production of viral particles. Like its alpha- and beta-herpesviral homologs, ORF42 is a late protein that accumulates in the viral particles. However, unlike its homologs, ORF42 appears to be required for efficient expression of at least some viral proteins and may potentiate post-transcriptional stages of gene expression. These results demonstrate that ORF42 has an important role in KSHV replication and may contribute to shaping viral gene expression.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/fisiologia , Proteínas Virais/metabolismo , Vírion/metabolismo , Citoplasma/metabolismo , Células HEK293 , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Mutação , Fases de Leitura Aberta , Proteínas Virais/genética , Replicação Viral
11.
Curr Opin Virol ; 32: 48-59, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30268926

RESUMO

Most humans are infected with at least one of the known human cancer viruses during their lifetimes. While the initial infection with these viruses does not cause major disease, infected cells can acquire cancer hallmarks, particularly upon immunosuppression or exposure to co-carcinogenic stimuli. Even though cancer formation represents a rare outcome of a viral infection, approximately one out of eight human cancers has a viral etiology. Viral cancers present unique opportunities for prophylaxis, diagnosis, and therapy, as demonstrated by the success of HBV and HPV vaccines and HCV antivirals in decreasing the incidence of tumors that are caused by these viruses. Here we review common characteristics and mechanisms of action of the human oncogenic viruses.


Assuntos
Carcinogênese , Neoplasias/virologia , Oncogenes , Vírus Oncogênicos/patogenicidade , Infecções Tumorais por Vírus/genética , Animais , Transformação Celular Neoplásica , Humanos , Hospedeiro Imunocomprometido , Camundongos , Vírus Oncogênicos/genética , Vacinação , Viroses/complicações , Viroses/prevenção & controle
12.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30021896

RESUMO

Due to their roles in the regulation of programmed cell death and inflammation, the cellular caspase proteases are considered antiviral factors. However, recent studies have revealed examples of proviral functions for caspases. Here, we review a growing body of literature on the role of caspases in promoting the replication of human gammaherpesviruses. We propose that gammaherpesviruses have evolved ways to redirect these enzymes and to use their activation to support viral replication and immune evasion.


Assuntos
Caspases/genética , Células Eucarióticas/virologia , Gammaherpesvirinae/genética , Proteínas Imediatamente Precoces/genética , Evasão da Resposta Imune/genética , Provírus/genética , Animais , Apoptose , Caspases/imunologia , Células Eucarióticas/imunologia , Células Eucarióticas/metabolismo , Evolução Molecular , Gammaherpesvirinae/imunologia , Gammaherpesvirinae/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas Imediatamente Precoces/imunologia , Provírus/imunologia , Provírus/metabolismo , Transdução de Sinais , Vírion/genética , Vírion/imunologia , Vírion/metabolismo , Replicação Viral
13.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29514903

RESUMO

An important component of lytic infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is the ability of the virus to evade the innate immune response, specifically type I interferon (IFN) responses that are triggered by recognition of viral nucleic acids. Inhibition of type I IFN responses by the virus promotes viral replication. Here, we report that KSHV uses a caspase-dependent mechanism to block type I IFN, in particular IFN-ß, responses during lytic infection. Inhibition of caspases during KSHV reactivation resulted in increased TBK1/IKKε-dependent phosphorylation of IRF3 as well as elevated levels of IFN-ß transcription and secretion. The increased secretion of IFN-ß upon caspase inhibition reduced viral gene expression, viral DNA replication, and virus production. Blocking IFN-ß production or signaling restored viral replication. Overall, our results show that caspase-mediated regulation of pathogen sensing machinery is an important mechanism exploited by KSHV to evade innate immune responses.IMPORTANCE KSHV is the causative agent of Kaposi's sarcoma (KS), an AIDS-defining tumor that is one of the most common causes of cancer death in sub-Saharan Africa. In this study, we examined the role of a set of cellular proteases, called caspases, in the regulation of immune responses during KSHV infection. We demonstrate that caspases prevent the induction and secretion of the antiviral factor IFN-ß during replicative KSHV infection. The reduced IFN-ß production allows for high viral gene expression and viral replication. Therefore, caspases are important for maintaining KSHV replication. Overall, our results suggest that KSHV utilizes caspases to evade innate immune responses, and that inhibiting caspases could boost the innate immune response to this pathogen and potentially be a new antiviral strategy.


Assuntos
Caspases/metabolismo , Replicação do DNA , DNA Viral/biossíntese , Herpesvirus Humano 8/fisiologia , Interferon beta/metabolismo , Transdução de Sinais , Replicação Viral , Caspases/genética , DNA Viral/genética , Células HeLa , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética
14.
Curr Clin Microbiol Rep ; 5(4): 219-228, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30854283

RESUMO

PURPOSE OF REVIEW: Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of the AIDS-associated tumor Kaposi's sarcoma, is a complex virus that expresses ~90 proteins in a regulated temporal cascade during its replication cycle. Although KSHV relies on cellular machinery for gene expression, it also uses specialized regulators to control nearly every step of the process. In this review we discuss the current understanding of KSHV gene regulation. RECENT FINDINGS: High-throughput sequencing and a new robust system to mutate KSHV have paved the way for comprehensive studies of KSHV gene expression, leading to the characterization of new viral factors that control late gene expression and post-transcriptional steps of gene regulation. They have also revealed key aspects of chromatin-based control of gene expression in the latent and lytic cycle. SUMMARY: The combination of mutant analysis and high-throughput sequencing will continue to expand our model of KSHV gene regulation and point to potential new targets for anti-KSHV drugs.

15.
Viruses ; 8(4): 102, 2016 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-27092522

RESUMO

The ability to shut off host gene expression is a shared feature of many viral infections, and it is thought to promote viral replication by freeing host cell machinery and blocking immune responses. Despite the molecular differences between viruses, an emerging theme in the study of host shutoff is that divergent viruses use similar mechanisms to enact host shutoff. Moreover, even viruses that encode few proteins often have multiple mechanisms to affect host gene expression, and we are only starting to understand how these mechanisms are integrated. In this review we discuss the multiplicity of host shutoff mechanisms used by the orthomyxovirus influenza A virus and members of the alpha- and gamma-herpesvirus subfamilies. We highlight the surprising similarities in their mechanisms of host shutoff and discuss how the different mechanisms they use may play a coordinated role in gene regulation.


Assuntos
Regulação da Expressão Gênica , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesviridae/fisiologia , Interações Hospedeiro-Patógeno/genética , Vírus da Influenza A/fisiologia , Influenza Humana/genética , Influenza Humana/virologia , Animais , Infecções por Herpesviridae/metabolismo , Humanos , Influenza Humana/metabolismo , Proteólise , Splicing de RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica , Replicação Viral
16.
PLoS Pathog ; 11(12): e1005305, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26646420

RESUMO

Many viruses express factors that reduce host gene expression through widespread degradation of cellular mRNA. An example of this class of proteins is the mRNA-targeting endoribonuclease SOX from the gamma-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV). Previous studies indicated that cleavage of messenger RNAs (mRNA) by SOX occurs at specific locations defined by the sequence of the target RNA, which is at odds with the down-regulation of a large portion of cellular transcripts. In this study, we address this paradox by using high-throughput sequencing of cleavage intermediates combined with a custom bioinformatics-based analysis pipeline to identify SOX cleavage sites across the mRNA transcriptome. These data, coupled with targeted mutagenesis, reveal that while cleavage sites are specific and reproducible, they are defined by a degenerate sequence motif containing a small number of conserved residues rather than a strong consensus sequence. This degenerate element is well represented in both human and KSHV mRNA, and its presence correlates with RNA destabilization by SOX. This represents a new endonuclease targeting strategy, in which use of a degenerate targeting element enables RNA cleavage at specific locations without restricting the range of targets. Furthermore, it shows that strong target selectivity can be achieved without a high degree of sequence specificity.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Infecções por Herpesviridae/enzimologia , Herpesvirus Humano 8/enzimologia , Ribonucleases/metabolismo , Proteínas Virais/metabolismo , Sequência de Bases , Western Blotting , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , RNA Mensageiro , Transcriptoma
17.
PLoS Pathog ; 7(10): e1002339, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22046136

RESUMO

Several viruses encode factors that promote host mRNA degradation to silence gene expression. It is unclear, however, whether cellular mRNA turnover pathways are engaged to assist in this process. In Kaposi's sarcoma-associated herpesvirus this phenotype is enacted by the host shutoff factor SOX. Here we show that SOX-induced mRNA turnover is a two-step process, in which mRNAs are first cleaved internally by SOX itself then degraded by the cellular exonuclease Xrn1. SOX therefore bypasses the regulatory steps of deadenylation and decapping normally required for Xrn1 activation. SOX is likely recruited to translating mRNAs, as it cosediments with translation initiation complexes and depletes polysomes. Cleaved mRNA intermediates accumulate in the 40S fraction, indicating that recognition occurs at an early stage of translation. This is the first example of a viral protein commandeering cellular mRNA turnover pathways to destroy host mRNAs, and suggests that Xrn1 is poised to deplete messages undergoing translation in mammalian cells.


Assuntos
Exorribonucleases/genética , Herpesvirus Humano 8/genética , Proteínas Associadas aos Microtúbulos/genética , Ribonucleases/genética , Fatores de Transcrição SOX/genética , Proteínas Virais/genética , Vírion/genética , Animais , Exorribonucleases/metabolismo , Regulação Viral da Expressão Gênica , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Proteínas Virais/metabolismo , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA