Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 60(21): 1722-1730, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34010565

RESUMO

The fluorescent reporters commonly used to visualize proteins can perturb both protein structure and function. Recently, we found that 4-cyanotryptophan (4CN-Trp), a blue fluorescent amino acid, is suitable for one-photon imaging applications. Here, we demonstrate its utility in two-photon fluorescence microscopy by using it to image integrins on cell surfaces. Specifically, we used solid-phase peptide synthesis to generate CHAMP peptides labeled with 4-cyanoindole (4CNI) at their N-termini to image integrins on cell surfaces. CHAMP (computed helical anti-membrane protein) peptides spontaneously insert into membrane bilayers to target integrin transmembrane domains and cause integrin activation. We found that 4CNI labeling did not perturb the ability of CHAMP peptides to insert into membranes, bind to integrins, or cause integrin activation. We then used two-photon fluorescence microscopy to image 4CNI-containing integrins on the surface of platelets. Compared to a 4CNI-labeled scrambled peptide that uniformly decorated cell surfaces, 4CNI-labeled CHAMP peptides were present in discrete blue foci. To confirm that these foci represented CN peptide-containing integrins, we co-stained platelets with integrin-specific fluorescent monoclonal antibodies and found that CN peptide and antibody fluorescence coincided. Because 4CNI can readily be biosynthetically incorporated into proteins with little if any effect on protein structure and function, it provides a facile way to directly monitor protein behavior and protein-protein interactions in cellular environments. In addition, these results clearly demonstrate that the two-photon excitation cross section of 4CN-Trp is sufficiently large to make it a useful two-photon fluorescence reporter for biological applications.


Assuntos
Integrinas/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Triptofano/análogos & derivados , Aminoácidos/metabolismo , Plaquetas/metabolismo , Membrana Celular/metabolismo , Integrinas/fisiologia , Peptídeos/síntese química , Peptídeos/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Triptofano/síntese química , Triptofano/química
2.
Phys Chem Chem Phys ; 22(15): 7794-7802, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32242578

RESUMO

Glycine betaine (GB) is a naturally occurring osmolyte that has been widely recognized as a protein protectant. Since GB consists of a methylated ammonium moiety, it can engage in strong cation-π interactions with aromatic amino acid sidechains. We hypothesize that such specific binding interactions would allow GB to decrease the stability of proteins that are predominantly stabilized by a cluster of aromatic amino acids. To test this hypothesis, we investigate the effect of GB on the stability of two ß-hairpins (or mini-proteins) that contain such a cluster. We find that for both systems the stability of the folded state first decreases and then increases with increasing GB concentration. Such non-monotonic dependence not only confirms that GB can act as a protein denaturant, but also underscores the complex interplay between GB's stabilizing and destabilizing forces toward a given protein. While stabilizing osmolytes all have the tendency to be excluded from the protein surface which is the action underlying their stabilizing effect, our results suggest that in order to quantitatively assess the effect of GB on the stability of any given protein, specific cation-π binding interactions need to be explicitly considered. Moreover, our results show, consistent with other studies, that cation methylation can strengthen the respective cation-π interactions. Taken together, these findings provide new insight into the mechanism by which amino acid-based osmolytes interact with proteins.


Assuntos
Betaína/farmacologia , Desnaturação Proteica , Proteínas/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteínas/química
3.
Lipids Health Dis ; 18(1): 107, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043156

RESUMO

BACKGROUND: Atherosclerotic cardiovascular disease (ASCVD) refers to a series of diseases caused by atherosclerosis (AS). It is one of the most important causes of death worldwide. According to the inflammatory response theory, macrophages play a critical role in AS. However, the potential targets associated with macrophages in the development of AS are still obscure. This study aimed to use bioinformatics tools for screening and identifying molecular targets in AS macrophages. METHODS: Two expression profiling datasets (GSE7074 and GSE9874) were obtained from the Gene Expression Omnibus dataset, and differentially expressed genes (DEGs) between non-AS macrophages and AS macrophages were identified. Functional annotation of the DEGs was performed by analyzing the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. STRING and Cytoscape were employed for constructing a protein-protein interaction network and analyzing hub genes. RESULTS: A total of 98 DEGs were distinguished between non-AS macrophages and AS macrophages. The functional variations in DEGs were mainly enriched in response to hypoxia, respiratory gaseous exchange, protein binding, and intracellular, ciliary tip, early endosome membrane, and Lys63-specific deubiquitinase activities. Three genes were identified as hub genes, including KDELR3, CD55, and DYNC2H1. CONCLUSION: Hub genes and DEGs identified by using microarray techniques can be used as diagnostic and therapeutic biomarkers for AS.


Assuntos
Aterosclerose/genética , Biomarcadores/metabolismo , Macrófagos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Análise por Conglomerados , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Anotação de Sequência Molecular , Mapas de Interação de Proteínas/genética
4.
J Phys Chem B ; 123(8): 1797-1807, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30694671

RESUMO

One of the fundamental events in protein folding is α-helix formation, which involves sequential development of a series of helical hydrogen bonds between the backbone C═O group of residues i and the -NH group of residues i + 4. While we now know a great deal about α-helix folding dynamics, a key question that remains to be answered is where the productive helical nucleation event occurs. Statistically, a helical nucleus (or the first helical hydrogen-bond) can form anywhere within the peptide sequence in question; however, the one that leads to productive folding may only form at a preferred location. This consideration is based on the fact that the α-helical structure is inherently asymmetric, due to the specific alignment of the helical hydrogen bonds. While this hypothesis is plausible, validating it is challenging because there is not an experimental observable that can be used to directly pinpoint the location of the productive nucleation process. Therefore, in this study we combine several techniques, including peptide cross-linking, laser-induced temperature-jump infrared spectroscopy, and molecular dynamics simulations, to tackle this challenge. Taken together, our experimental and simulation results support an α-helix folding mechanism wherein the productive nucleus is formed at the N-terminus, which propagates toward the C-terminal end of the peptide to yield the folded structure. In addition, our results show that incorporation of a cross-linker can lead to formation of differently folded conformations, underscoring the need for all-atom simulations to quantitatively assess the proposed cross-linking design.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/química , Dobramento de Proteína , Cinética , Conformação Proteica em alfa-Hélice , Temperatura
5.
Epilepsy Res ; 142: 1-8, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29524833

RESUMO

Pilocarpine-induced acute seizures strongly induce aberrant hippocampal neurogenesis, characterized by increased proliferation of neural progenitors and abnormal integrations of newly generated granule cells - hilar ectopic granule cells (EGCs), mossy fibre sprouting (MFS), and hilar basal dendrites (HBDs), which may disturb hippocampal neuronal circuits and thus contribute to cognitive impairment in temporal lobe epilepsy (TLE) patients and animal models. Previous studies via ablating hippocampal neurogenesis after acute seizures produced inconsistent results regarding the development of long-term cognitive impairment. Furthermore, a sufficient decrease of subsequent abnormal integrations in chronically epileptic hippocampus was not well-established in these studies. Therefore, the link between seizure-induced aberrant hippocampal neurogenesis and cognitive decline associated with epilepsy is still in need to be clarified. In this study, the mice were injected with methylazoxymethanol acetate (MAM) both before and after pilocarpine-induced status epilepticus (SE) to achieve an overall ablation of newborn cells contributing to the pathological recruitment. In addition, a protracted time point was chosen for behavioral testing considering it takes a fairly long time for newborn granule cells to adequately develop abnormal integrations, especially MFS. Although an overall reduction of abnormal integrations, including EGCs, MFS and HBDs was confirmed following the ablation regime, the performance of ablated and non-ablated mice in the Morris Water Maze (MWM) task did not differ. The current findings therefore provide novel evidences that ablation of neurogenesis with an overall decrease of abnormal integrations cannot attenuate subsequent cognitive impairment at least in the model used in this study.


Assuntos
Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Hipocampo/patologia , Acetato de Metilazoximetanol/uso terapêutico , Estado Epiléptico/complicações , Animais , Bromodesoxiuridina/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Proteínas de Homeodomínio/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Agonistas Muscarínicos/toxicidade , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Neuropeptídeos/metabolismo , Pilocarpina/toxicidade , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia , Transdução Genética , Proteínas Supressoras de Tumor/metabolismo
6.
Chembiochem ; 19(9): 902-906, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29417711

RESUMO

Although helices play key roles in peptide-protein and protein-protein interactions, the helical conformation is generally unstable for short peptides (10-15 residues) in aqueous solution in the absence of their binding partners. Thus, stabilizing the helical conformation of peptides can lead to increases in binding potency, specificity, and stability towards proteolytic degradation. Helices have been successfully stabilized by introducing side chain-to-side chain crosslinks within the central portion of the helix. However, this approach leaves the ends of the helix free, thus leading to fraying and exposure of the non-hydrogen-bonded amide groups to solvent. Here, we develop a "capped-strapped" peptide strategy to stabilize helices by embedding the entire length of the helix within a macrocycle, which also includes a semirigid organic template as well as end-capping interactions. We have designed a ten-residue capped-strapped helical peptide that behaves like a miniprotein, with a cooperative thermal unfolding transition and Tm ≈70 °C, unprecedented for helical peptides of this length. The NMR structure determination confirmed the design, and X-ray crystallography revealed a novel quaternary structure with implications for foldamer design.


Assuntos
Compostos Macrocíclicos/química , Peptídeos/química , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Desdobramento de Proteína , Temperatura
7.
Epilepsy Res ; 133: 58-66, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28431266

RESUMO

Epileptic seizures lead to aberrant hippocampal neurogenesis, including increased proliferation of neural progenitors and abnormal integrations of newly generated granule cells - hilar ectopic granule cells (EGCs), mossy fiber sprouting (MFS), and hilar basal dendrites (HBDs). Previous results from ablating hippocampal neurogenesis after acute seizures have been controversial with regards to the development of spontaneous recurrent seizures (SRSs). While ablation of hippocampal newborn cells was effective, a sufficient decrease of subsequent abnormal integrations in chronically epileptic hippocampus was not well-established in these studies. Evaluations of the role of aberrant neurogenesis in epileptogenesis were therefore inconclusive. In this study, we ablated the hippocampal neurogenesis by methylazoxymethanol acetate (MAM) treatment both before and after pilocarpine induced status epilepticus (SE). We found that an overall ablation of newborn granule cells and a protracted delay after the cell ablation are required to eliminate subsequent abnormal integrations, including EGCs, MSF and HBDs. However, there were no alterations in frequency, duration and severity of chronic seizures were demonstrated following this regime. The current findings provide novel evidences that an overall decrease of abnormal integrations via cell ablation cannot exert significant effects on the development of SRSs at least in the model used in this study.


Assuntos
Hipocampo/patologia , Neurogênese/fisiologia , Convulsões/patologia , Estado Epiléptico/patologia , Animais , Bromodesoxiuridina/metabolismo , Contagem de Células , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Feminino , Fluoresceínas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Agonistas Muscarínicos/toxicidade , Neurogênese/efeitos dos fármacos , Neuropeptídeos/metabolismo , Pilocarpina/toxicidade , Recidiva , Escopolamina/toxicidade , Estado Epiléptico/induzido quimicamente , Transdução Genética , Proteínas Supressoras de Tumor/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(5): 1003-1008, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096375

RESUMO

Many ions are known to affect the activity, stability, and structural integrity of proteins. Although this effect can be generally attributed to ion-induced changes in forces that govern protein folding, delineating the underlying mechanism of action still remains challenging because it requires assessment of all relevant interactions, such as ion-protein, ion-water, and ion-ion interactions. Herein, we use two unnatural aromatic amino acids and several spectroscopic techniques to examine whether guanidinium chloride, one of the most commonly used protein denaturants, and tetrapropylammonium chloride can specifically interact with aromatic side chains. Our results show that tetrapropylammonium, but not guanidinium, can preferentially accumulate around aromatic residues and that tetrapropylammonium undergoes a transition at ∼1.3 M to form aggregates. We find that similar to ionic micelles, on one hand, such aggregates can disrupt native hydrophobic interactions, and on the other hand, they can promote α-helix formation in certain peptides.


Assuntos
Alanina/análogos & derivados , Aminoácidos Aromáticos/efeitos dos fármacos , Guanidina/farmacologia , Compostos de Amônio Quaternário/farmacologia , Espectrofotometria Infravermelho/métodos , Alanina/química , Alanina/efeitos dos fármacos , Aminoácidos Aromáticos/química , Peptídeos Catiônicos Antimicrobianos/química , Dicroísmo Circular , Guanidina/química , Interações Hidrofóbicas e Hidrofílicas , Nitrilas/química , Peptídeos/química , Desnaturação Proteica , Estabilidade Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Compostos de Amônio Quaternário/química , Solventes , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Protein Sci ; 26(2): 375-381, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27813296

RESUMO

The ester carbonyl stretching vibration has recently been shown to be a sensitive and convenient infrared (IR) probe of protein electrostatics due to the linear dependence of its frequency on local electric field. While an ester moiety can be easily incorporated into peptides via solid-phase synthesis, currently there is no method available to site-specifically incorporate it into a large protein. Herein, we show that it is possible to use a cysteine alkylation reaction to achieve this goal and demonstrate the feasibility of this simple method by successfully incorporating a methyl ester group (CH2 COOCH3 ) into a model peptide (YGGCGG), two amyloid-forming peptides derived from the insulin B chain and Aß, and bovine serum albumin (BSA). IR results obtained with those peptide and protein systems further confirm the utility of this vibrational probe in monitoring, for example, the structural integrity of amyloid fibrils and ligand binding-induced changes in protein local hydration status.


Assuntos
Peptídeos beta-Amiloides/química , Insulina/química , Sondas Moleculares/química , Soroalbumina Bovina/química , Animais , Bovinos , Humanos , Espectrofotometria Infravermelho/métodos
10.
Chemphyschem ; 16(17): 3595-8, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26419214

RESUMO

Site-selective isotopic labeling of amide carbonyls offers a nonperturbative means to introduce a localized infrared probe into proteins. Although this strategy has been widely used to investigate various biological questions, the dependence of the underlying amide I vibrational frequency on electric fields (or Stark tuning rate) has not been fully determined, which prevents it from being used in a quantitative manner in certain applications. Herein, through the use of experiments and molecular dynamics simulations, the Stark tuning rate of the amide I vibration of an isotopically labeled backbone carbonyl in a transmembrane α-helix is determined to be approximately 1.4 cm(-1) /(MV/cm). This result provides a quantitative basis for using this vibrational model to assess local electric fields in proteins, among other applications. For instance, by using this value, we are able to show that the backbone region of a dipeptide has a surprisingly low dielectric constant.


Assuntos
Amidas/química , Eletricidade , Simulação de Dinâmica Molecular , Peptídeos/química , Vibração
11.
Brain Res ; 1625: 189-97, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26363093

RESUMO

The aim of this study was to investigate the effects of vasoactive intestinal peptide (VIP) on neurogenesis and neurological function after cerebral ischemia. Rats were intracerebroventricular administered with VIP after a 2h middle cerebral artery occlusion (MCAO) and sacrificed at 7, 14 and 28 days after MCAO. Functional outcome was studied with the modified neurological severity score. The infarct volume was evaluated via histology. Neurogenesis, angiogenesis and the protein expression of vascular endothelial growth factor (VEGF) were measured by immunohistochemistry and Western blotting analysis, respectively. The treatment with VIP significantly reduced the neurological severity score and the infarc volume, and increased the numbers of bromodeoxyuridine (BrdU) immunoreactive cells and doublecortin immunoreactive area in the subventricular zone (SVZ) at 7, 14 and 28 days after ischemia. The cerebral protein levels of VEGF and VEGF expression in the SVZ were also enhanced in VIP-treated rats at 7 days after stroke. VIP treatment obviously increased the number of BrdU positive endothelial cells in the SVZ and density of cerebral microvessels in the ischemic boundary at 28 days after ischemia. Our study suggests that in the ischemic rat brain VIP reduces brain damage and promotes neurogenesis by increasing VEGF. VIP-enhanced neurogenesis is associated with angiogenesis. These changes may contribute to improvement in functional outcome.


Assuntos
Infarto da Artéria Cerebral Média/complicações , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/etiologia , Neurogênese/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/administração & dosagem , Animais , Antígenos CD34/metabolismo , Bromodesoxiuridina , Contagem de Células , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Células Endoteliais/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
J Phys Chem Lett ; 6(3): 521-6, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26120378

RESUMO

The attempt frequency or prefactor (k0) of the transition-state rate equation of protein folding kinetics has been estimated to be on the order of 10(6) s(-1), which is many orders of magnitude smaller than that of chemical reactions. Herein we use the mini-protein Trp-cage to show that it is possible to significantly increase the value of k0 for a protein folding reaction by rigidifying the transition state. This is achieved by reducing the conformational flexibility of a key structural element (i.e., an α-helix) formed in the transition state via photoisomerization of an azobenzene cross-linker. We find that this strategy not only decreases the folding time of the Trp-cage peptide by more than an order of magnitude (to ∼100 ns at 25°C) but also exposes parallel folding pathways, allowing us to provide, to the best of our knowledge, the first quantitative assessment of the curvature of the transition-state free-energy surface of a protein.


Assuntos
Peptídeos/química , Dobramento de Proteína , Cinética , Modelos Moleculares , Estrutura Secundária de Proteína , Termodinâmica
13.
Int J Biochem Cell Biol ; 64: 252-64, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25936756

RESUMO

Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aß). Reuptake of extracellular Aß is believed to contribute significantly to the intraneuronal Aß pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aß1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aß internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aß1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aß internalization in neurons. We found that extracellular Aß1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aß1-42 and LRP1 were also found co-localized in neurons during Aß1-42 internalization, and they could form Aß1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aß1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aß1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aß1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aß levels and served a potential therapeutic target for AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Sistema de Sinalização das MAP Quinases , Fragmentos de Peptídeos/metabolismo , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Córtex Cerebral/citologia , Endossomos/metabolismo , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Lisossomos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neurônios , Cultura Primária de Células , Transporte Proteico
14.
Anal Biochem ; 483: 21-6, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25935260

RESUMO

We expand the spectroscopic utility of a well-known infrared and fluorescence probe, p-cyanophenylalanine, by showing that it can also serve as a pH sensor. This new application is based on the notion that the fluorescence quantum yield of this unnatural amino acid, when placed at or near the N-terminal end of a polypeptide, depends on the protonation status of the N-terminal amino group of the peptide. Using this pH sensor, we are able to determine the N-terminal pKa values of nine tripeptides and also the membrane penetration kinetics of a cell-penetrating peptide. Taken together, these examples demonstrate the applicability of using this unnatural amino acid fluorophore to study pH-dependent biological processes or events that accompany a pH change.


Assuntos
Alanina/análogos & derivados , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/química , Nitrilas/química , Alanina/química , Aminas/química , Concentração de Íons de Hidrogênio , Cinética , Espectrometria de Fluorescência
15.
Biopolymers ; 104(4): 281-90, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25808575

RESUMO

Despite our extensive understanding of water-soluble protein folding kinetics, much less is known about the folding dynamics and mechanisms of membrane proteins. However, recent studies have shown that for relatively simple systems, such as peptides that form a transmembrane α-helix, helical dimer, or helix-turn-helix, it is possible to assess the kinetics of several important steps, including peptide binding to the membrane from aqueous solution, peptide folding on the membrane surface, helix insertion into the membrane, and helix-helix association inside the membrane. Herein, we provide a brief review of these studies and also suggest new initiation and probing methods that could lead to improved temporal and structural resolution in future experiments.


Assuntos
Membrana Celular/química , Membranas Artificiais , Peptídeos/química , Dobramento de Proteína , Animais , Humanos , Cinética , Estrutura Secundária de Proteína
16.
Phys Chem Chem Phys ; 17(12): 7881-7, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25716887

RESUMO

The C≡N stretching frequency and fluorescence quantum yield of p-cyanophenylalanine are sensitive to environment. As such, this unnatural amino acid has found broad applications, ranging from studying how proteins fold to determining the local electric field of membranes. Herein, we demonstrate that the fluorescence of p-cyanophenylalanine can be quenched by selenomethionine through an electron transfer process occurring at short distances, thus further expanding its spectroscopic utility. Using this fluorophore-quencher pair, we are able to show that short polyproline peptides (1-4 prolines) are not rigid; instead, they sample a bimodal conformational distribution.


Assuntos
Alanina/análogos & derivados , Corantes Fluorescentes/química , Nitrilas/química , Peptídeos/química , Selenometionina/química , Alanina/química , Cinética , Simulação de Dinâmica Molecular , Conformação Proteica , Espectrometria de Fluorescência
17.
J Phys Chem B ; 118(39): 11455-61, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25215518

RESUMO

Trifluoroethanol (TFE) is commonly used to induce protein secondary structure, especially α-helix formation. Due to its amphiphilic nature, however, TFE can also self-associate to form micellelike, nanometer-sized clusters. Herein, we hypothesize that such clusters can act as nanocrowders to increase protein folding rates via the excluded volume effect. To test this hypothesis, we measure the conformational relaxation kinetics of an intrinsically disordered protein, the phosphorylated kinase inducible domain (pKID), which forms a helix-turn-helix in TFE solutions. We find that the conformational relaxation rate of pKID displays a rather complex dependence on TFE percentage (v/v): while it first decreases between 0 and 5%, between 5 and 15% the rate increases and then remains relatively unchanged between 15 and 30% and finally decreases again at higher percentages (i.e., 50%). This trend coincides with the fact that TFE clustering is maximized in the range of 15-30%, thus providing validation of our hypothesis. Another line of supporting evidence comes from the observation that the relaxation rate of a monomeric helical peptide, which due to its predominantly local interactions in the folded state is less affected by crowding, does not show a similar TFE dependence.


Assuntos
Trifluoretanol/química , Sequência de Aminoácidos , Dicroísmo Circular , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Dobramento de Proteína , Estrutura Secundária de Proteína , Desdobramento de Proteína , Temperatura , Termodinâmica
18.
Proc Natl Acad Sci U S A ; 111(23): 8476-81, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912147

RESUMO

Although it is widely known that trimethylamine N-oxide (TMAO), an osmolyte used by nature, stabilizes the folded state of proteins, the underlying mechanism of action is not entirely understood. To gain further insight into this important biological phenomenon, we use the C≡N stretching vibration of an unnatural amino acid, p-cyano-phenylalanine, to directly probe how TMAO affects the hydration and conformational dynamics of a model peptide and a small protein. By assessing how the lineshape and spectral diffusion properties of this vibration change with cosolvent conditions, we are able to show that TMAO achieves its protein-stabilizing ability through the combination of (at least) two mechanisms: (i) It decreases the hydrogen bonding ability of water and hence the stability of the unfolded state, and (ii) it acts as a molecular crowder, as suggested by a recent computational study, that can increase the stability of the folded state via the excluded volume effect.


Assuntos
Metilaminas/farmacologia , Peptídeos/química , Conformação Proteica/efeitos dos fármacos , Proteínas/química , Ligação de Hidrogênio/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Mutação , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Ureia/farmacologia , Água/química
19.
J Phys Chem B ; 118(28): 7799-805, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24712671

RESUMO

It is well known that histidine is involved in many biological functions due to the structural versatility of its side chain. However, probing the conformational transitions of histidine in proteins, especially those occurring on an ultrafast time scale, is difficult. Herein we show, using a histidine dipeptide as a model, that it is possible to probe the tautomer and protonation status of a histidine residue by measuring the two-dimensional infrared (2D IR) spectrum of its amide I vibrational transition. Specifically, for the histidine dipeptide studied, the amide unit of the histidine gives rise to three spectrally resolvable amide I features at approximately 1630, 1644, and 1656 cm(-1), respectively, which, based on measurements at different pH values and frequency calculations, are assigned to a τ tautomer (1630 cm(-1) component) and a π tautomer with a hydrated (1644 cm(-1) component) or dehydrated (1656 cm(-1) component) amide. Because of the intrinsic ultrafast time resolution of 2D IR spectroscopy, we believe that the current approach, when combined with the isotope editing techniques, will be useful in revealing the structural dynamics of key histidine residues in proteins that are important for function.


Assuntos
Amidas/química , Histidina/química , Espectrofotometria Infravermelho/métodos , Estrutura Molecular , Peptídeos/química
20.
Neurol Res ; 36(7): 651-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24620968

RESUMO

OBJECTIVES: Valsartan has been reported to reduce brain beta-amyloid protein levels and improve spatial learning in the Tg2576 transgenic mouse model of Alzheimer's disease (AD). However, the exact mechanism of neuroprotective effects of valsartan has not been properly studied especially in cholinergic function and oxidative damage, the essential factors that undergo impairment in AD. Therefore, the present study examined the effects of valsartan on memory impairment, cholinergic dysfunction, and oxidative stress in aluminum trichloride (AlCl3) and d-galactose (d-gal)-induced experimental sporadic dementia of Alzheimer's type. METHODS: Valsartan was administered intragastrically (i.g.) (20 mg/kg/day) for 60 days after mice were given AlCl3 (10 mg/kg/day) and d-gal (150 mg/kg/day) intraperitoneally (i.p.) once daily for 90 days. Then, memory function was evaluated by Morris water maze test. Acetylcholinesterase (AChE), superoxide dismutases (SOD) and glutathione peroxidase (GSH-Px) activities and malondialdehyde (MDA) level in cortex and hippocampus were also assessed with biochemical technique. RESULTS: Chronic administration of valsartan not only improved learning and memory but also restored the elevation of AChE activity induced by AlCl3 and d-gal in cortex and hippocampus. In addition, valsartan significantly restored SOD and GSH-Px activities and reduced MDA level in cortex and hippocampus indicating attenuation of oxidative stress. DISCUSSION: Our results indicate that valsartan prevents AlCl3- and d-gal-induced cognitive decline partly to restore cholinergic function and attenuate oxidative damage. These findings further support the potential of valsartan to be used in AD treatment.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Nootrópicos/farmacologia , Tetrazóis/farmacologia , Valina/análogos & derivados , Acetilcolinesterase/metabolismo , Cloreto de Alumínio , Compostos de Alumínio , Animais , Córtex Cerebral/fisiopatologia , Cloretos , Transtornos Cognitivos/fisiopatologia , Demência , Modelos Animais de Doenças , Galactose , Glutationa Peroxidase/metabolismo , Hipocampo/fisiopatologia , Malondialdeído/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/fisiopatologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Superóxido Dismutase/metabolismo , Valina/farmacologia , Valsartana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA