Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Nutr Diabetes ; 14(1): 45, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886355

RESUMO

BACKGROUND/OBJECTIVES: Increased free fatty acid (FFA) promotes adiponectin secretion in healthy subjects and induces inflammation in diabetes. Given the potential pro-inflammatory role of adiponectin in "adiponectin paradox", we performed this study in patients with type 2 diabetes mellitus (T2DM) to assess the association of FFA with adiponectin and to investigate whether adiponectin mediates FFA-related inflammation. METHODS: This cross-sectional study consisted of adult patients with T2DM. FFA, adiponectin, and tumor necrosis factor-α (TNF-α) were assayed from fasting venous blood after overnight fasting for at least 8 h. Multivariable linear regression analysis and restricted cubic splines (RCS) analysis were performed to identify the association between FFA and adiponectin. Mediation analysis was performed to determine the mediating effect of adiponectin on the association between FFA and TNF-α. RESULTS: This study included 495 participants, with 332 males (67.1%) and a mean age of 47.0 ± 11.2 years. FFA was positively associated with adiponectin (b = 0.126, 95%CI: 0.036-0.215, P = 0.006) and was the main contributor to the increase of adiponectin (standardized b = 0.141). The RCS analysis demonstrated that adiponectin increased with FFA when FFA was less than 0.7 mmol/L but did not further increase thereafter (Poverall < 0.001 and Pnon-linear < 0.001). In addition, adiponectin mediated the association between FFA and TNF-α. The mediating effect was 0.08 (95%CI: 0.03-0.13, P = 0.003) and the mediating effect percentage was 26.8% (95%CI: 4.5-49.2, P = 0.02). CONCLUSIONS: In patients with T2DM, FFA was positively associated with adiponectin when FFA was less than 0.7 mmol/L. Elevated adiponectin mediated FFA-related inflammation. This study may provide insights into the pro-inflammatory effect of adiponectin in T2DM.


Assuntos
Adiponectina , Diabetes Mellitus Tipo 2 , Ácidos Graxos não Esterificados , Fator de Necrose Tumoral alfa , Humanos , Adiponectina/sangue , Masculino , Ácidos Graxos não Esterificados/sangue , Feminino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/sangue , Estudos Transversais , Diabetes Mellitus Tipo 2/sangue , Adulto , Inflamação/sangue
2.
Cell Rep Med ; 4(5): 101051, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37196633

RESUMO

Alterations in the microbiome correlate with improved metabolism in patients following bariatric surgery. While fecal microbiota transplantation (FMT) from obese patients into germ-free (GF) mice has suggested a significant role of the gut microbiome in metabolic improvements following bariatric surgery, causality remains to be confirmed. Here, we perform paired FMT from the same obese patients (BMI > 40; four patients), pre- and 1 or 6 months post-Roux-en-Y gastric bypass (RYGB) surgery, into Western diet-fed GF mice. Mice colonized by FMT from patients' post-surgery stool exhibit significant changes in microbiota composition and metabolomic profiles and, most importantly, improved insulin sensitivity compared with pre-RYGB FMT mice. Mechanistically, mice harboring the post-RYGB microbiome show increased brown fat mass and activity and exhibit increased energy expenditure. Moreover, improvements in immune homeostasis within the white adipose tissue are also observed. Altogether, these findings point to a direct role for the gut microbiome in mediating improved metabolic health post-RYGB surgery.


Assuntos
Cirurgia Bariátrica , Microbioma Gastrointestinal , Resistência à Insulina , Camundongos , Animais , Tecido Adiposo Marrom , Obesidade/cirurgia , Metabolismo Energético
3.
Diabetes Obes Metab ; 25(2): 479-490, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36239189

RESUMO

AIM: To assess the effects of faecal microbial transplant (FMT) from lean people to subjects with obesity via colonoscopy. MATERIAL AND METHODS: In a double-blind, randomized controlled trial, subjects with a body mass index ≥ 35 kg/m2 and insulin resistance were randomized, in a 1:1 ratio in blocks of four, to either allogenic (from healthy lean donor; n = 15) or autologous FMT (their own stool; n = 13) delivered in the caecum and were followed for 3 months. The main outcome was homeostatic model assessment of insulin resistance (HOMA-IR) and secondary outcomes were glycated haemoglobin levels, lipid profile, weight, gut hormones, endotoxin, appetite measures, intestinal microbiome (IM), metagenome, serum/faecal metabolites, quality of life, anxiety and depression scores. RESULTS: In the allogenic versus autologous groups, HOMA-IR and clinical variables did not change significantly, but IM and metabolites changed favourably (P < 0.05): at 1 month, Coprococcus, Bifidobacterium, Bacteroides and Roseburia increased, and Streptococcus decreased; at 3 months, Bacteroides and Blautia increased. Several species also changed significantly. For metabolites, at 1 month, serum kynurenine decreased and faecal indole acetic acid and butenylcarnitine increased, while at 3 months, serum isoleucine, leucine, decenoylcarnitine and faecal phenylacetic acid decreased. Metagenomic pathway representations and network analyses assessing relationships with clinical variables, metabolites and IM were significantly enhanced in the allogenic versus autologous groups. LDL and appetite measures improved in the allogenic (P < 0.05) but not in the autologous group. CONCLUSIONS: Overall, in those with obeisty, allogenic FMT via colonoscopy induced favourable changes in IM, metabolites, pathway representations and networks even though other metabolic variables did not change. LDL and appetite variables may also benefit.


Assuntos
Resistência à Insulina , Obesidade Mórbida , Humanos , Qualidade de Vida , Obesidade/complicações , Obesidade/terapia , Colonoscopia , Método Duplo-Cego
4.
Cell Mol Gastroenterol Hepatol ; 13(2): 599-622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34610499

RESUMO

BACKGROUND: Autophagosome, the central organelle in autophagy process, can assemble via canonical pathway mediated by LC3-II, the lipidated form of autophagy-related protein LC3/ATG8, or noncanonical pathway mediated by the small GTPase Rab9. Canonical autophagy is essential for exocrine pancreas homeostasis, and its disordering initiates and drives pancreatitis. The involvement of noncanonical autophagy has not been explored. We examine the role of Rab9 in pancreatic autophagy and pancreatitis severity. METHODS: We measured the effect of Rab9 on parameters of autophagy and pancreatitis responses using transgenic mice overexpressing Rab9 (Rab9TG) and adenoviral transduction of acinar cells. Effect of canonical autophagy on Rab9 was assessed in ATG5-deficient acinar cells. RESULTS: Pancreatic levels of Rab9 and its membrane-bound (active) form decreased in rodent pancreatitis models and in human disease. Rab9 overexpression stimulated noncanonical and inhibited canonical/LC3-mediated autophagosome formation in acinar cells through up-regulation of ATG4B, the cysteine protease that delipidates LC3-II. Conversely, ATG5 deficiency caused Rab9 increase in acinar cells. Inhibition of canonical autophagy in Rab9TG pancreas was associated with accumulation of Rab9-positive vacuoles containing markers of mitochondria, protein aggregates, and trans-Golgi. The shift to the noncanonical pathway caused pancreatitis-like damage in acinar cells and aggravated experimental pancreatitis. CONCLUSIONS: The results show that Rab9 regulates pancreatic autophagy and indicate a mutually antagonistic relationship between the canonical/LC3-mediated and noncanonical/Rab9-mediated autophagy pathways in pancreatitis. Noncanonical autophagy fails to substitute for its canonical counterpart in protecting against pancreatitis. Thus, Rab9 decrease in experimental and human pancreatitis is a protective response to sustain canonical autophagy and alleviate disease severity.


Assuntos
Pâncreas , Pancreatite , Células Acinares/metabolismo , Animais , Autofagossomos , Autofagia , Camundongos , Pancreatite/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/farmacologia
5.
Autophagy ; 17(10): 3068-3081, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33213278

RESUMO

Intrapancreatic trypsin activation by dysregulated macroautophagy/autophagy and pathological exocytosis of zymogen granules (ZGs), along with activation of inhibitor of NFKB/NF-κB kinase (IKK) are necessary early cellular events in pancreatitis. How these three pancreatitis events are linked is unclear. We investigated how SNAP23 orchestrates these events leading to pancreatic acinar injury. SNAP23 depletion was by knockdown (SNAP23-KD) effected by adenovirus-shRNA (Ad-SNAP23-shRNA/mCherry) treatment of rodent and human pancreatic slices and in vivo by infusion into rat pancreatic duct. In vitro pancreatitis induction by supraphysiological cholecystokinin (CCK) or ethanol plus low-dose CCK were used to assess SNAP23-KD effects on exocytosis and autophagy. Pancreatitis stimuli resulted in SNAP23 translocation from its native location at the plasma membrane to autophagosomes, where SNAP23 would bind and regulate STX17 (syntaxin17) SNARE complex-mediated autophagosome-lysosome fusion. This SNAP23 relocation was attributed to IKBKB/IKKß-mediated SNAP23 phosphorylation at Ser95 Ser120 in rat and Ser120 in human, which was blocked by IKBKB/IKKß inhibitors, and confirmed by the inability of IKBKB/IKKß phosphorylation-disabled SNAP23 mutant (Ser95A Ser120A) to bind STX17 SNARE complex. SNAP23-KD impaired the assembly of STX4-driven basolateral exocytotic SNARE complex and STX17-driven SNARE complex, causing respective reduction of basolateral exocytosis of ZGs and autolysosome formation, with consequent reduction in trypsinogen activation in both compartments. Consequently, pancreatic SNAP23-KD rats were protected from caerulein and alcoholic pancreatitis. This study revealed the roles of SNAP23 in mediating pathological basolateral exocytosis and IKBKB/IKKß's involvement in autolysosome formation, both where trypsinogen activation would occur to cause pancreatitis. SNAP23 is a strong candidate to target for pancreatitis therapy.Abbreviations: AL: autolysosome; AP: acute pancreatitis; AV: autophagic vacuole; CCK: cholecystokinin; IKBKB/IKKß: inhibitor of nuclear factor kappa B kinase subunit beta; SNAP23: synaptosome associated protein 23; SNARE: soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor; STX: syntaxin; TAP: trypsinogen activation peptide; VAMP: vesicle associated membrane protein; ZG: zymogen granule.


Assuntos
Pancreatite , Proteínas Qb-SNARE , Proteínas Qc-SNARE , Doença Aguda , Animais , Autofagia , Exocitose , Humanos , Lisossomos , Pâncreas , Pancreatite/genética , Pancreatite/prevenção & controle , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Ratos , Tripsina/farmacologia , Proteínas de Transporte Vesicular
6.
Lipids Health Dis ; 19(1): 226, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059672

RESUMO

BACKGROUND: Prediabetes has become a pandemic. This study aimed to identify a better predictor for the incidence of prediabetes, which we hypothesize to be the triglyceride-glucose (TyG) index, a simplified insulin resistance index. We compared its predictive value with the other common risk factors of prediabetes. METHODS: The participants of this analysis were derived from the Risk Evaluation of cAncers in Chinese diabeTic Individuals: a lONgitudinal (REACTION) study. A total of 4543 participants without initial prediabetes or diabetes were followed up for 3.25 years. Using multivariate logistic regression model, the associations between baseline obesity, lipid profiles and non-insulin-based insulin resistance indices with the incidence of prediabetes were analyzed. To assess which is better predictor for the incidence of prediabetes, the area under curves (AUCs) calculated from the receiver operating characteristic curve analyses were used to evaluate and compare with the predictive value of the different indices. RESULTS: During the 3.25 years, 1071 out of the 4543 participants developed prediabetes. Using the logistic regression analysis adjusted for some potential confounders, the risk of incidence of prediabetes increased 1.38 (1.28-1.48) fold for each 1-SD increment of TyG index. The predictive ability (assessed by AUCs) of TyG index for predicting prediabetes was 0.60 (0.58-0.62), which was superior to the indices of obesity, lipid profiles and other non-insulin-based insulin resistance indices. Although the predictive ability of the TyG index was overall similar to fasting plasma glucose (FPG) (P = 0.4340), TyG index trended higher than FPG in females (0.62 (0.59-0.64) vs. 0.59 (0.57-0.61), P = 0.0872) and obese subjects (0.59 (0.57-0.62) vs. 0.57 (0.54-0.59), P = 0.1313). TyG index had superior predictive ability for the prediabetic phenotype with isolated impaired glucose tolerance compared with FPG (P <  0.05) and other indices. Furthermore, TyG index significantly improved the C statistic (0.62 (0.60-0.64)), integrated discrimination improvement (1.89% (1.44-2.33%)) and net reclassification index (28.76% (21.84-35.67%)) of conventional model in predicting prediabetes than other indices. CONCLUSIONS: TyG could be a potential predictor to identify the high risk individuals of prediabetes.


Assuntos
Glicemia/análise , Estado Pré-Diabético/sangue , Triglicerídeos/sangue , China/epidemiologia , Jejum/sangue , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Estado Pré-Diabético/epidemiologia , Estudos Prospectivos , Curva ROC , Fatores de Risco
7.
Alcohol Clin Exp Res ; 44(4): 777-789, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32056245

RESUMO

Alcohol is a major cause of acute and chronic pancreatitis. There have been some recent advances in the understanding of the mechanisms underlying alcoholic pancreatitis, which include perturbation in mitochondrial function and autophagy and ectopic exocytosis, with some of these cellular events involving membrane fusion soluble N-ethylmaleimide-sensitive factor receptor protein receptor proteins. Although new insights have been unraveled recently, the precise mechanisms remain complex, and their finer details have yet to be established. The overall pathophysiology of pancreatitis involves not only the pancreatic acinar cells but also the stellate cells and duct cells. Why only some are more susceptible to pancreatitis and with increased severity, while others are not, would suggest that there may be undefined protective factors or mechanisms that enhance recovery and regeneration after injury. Furthermore, there are confounding influences of lifestyle factors such as smoking and diet, and genetic background. Whereas alcohol and smoking cessation and a generally healthy lifestyle are intuitively the advice given to these patients afflicted with alcoholic pancreatitis in order to reduce disease recurrence and progression, there is as yet no specific treatment. A more complete understanding of the pathogenesis of pancreatitis from which novel therapeutic targets could be identified will have a great impact, particularly with the stubbornly high fatality (>30%) of severe pancreatitis. This review focuses on the susceptibility factors and underlying cellular mechanisms of alcohol injury on the exocrine pancreas.


Assuntos
Pancreatite Alcoólica/epidemiologia , Acetaldeído/metabolismo , Autofagia , Cálcio/metabolismo , Suscetibilidade a Doenças , Estresse do Retículo Endoplasmático , Etanol/metabolismo , Exocitose , Predisposição Genética para Doença , Humanos , Hiperlipidemias/epidemiologia , Infecções/epidemiologia , NAD/metabolismo , Obesidade/epidemiologia , Pancreatite Alcoólica/metabolismo , Fatores de Proteção , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco , Proteínas SNARE/metabolismo , Índice de Gravidade de Doença , Fumar/epidemiologia
8.
Nat Commun ; 10(1): 3650, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409776

RESUMO

The intestinal immune system is emerging as an important contributor to obesity-related insulin resistance, but the role of intestinal B cells in this context is unclear. Here, we show that high fat diet (HFD) feeding alters intestinal IgA+ immune cells and that IgA is a critical immune regulator of glucose homeostasis. Obese mice have fewer IgA+ immune cells and less secretory IgA and IgA-promoting immune mediators. HFD-fed IgA-deficient mice have dysfunctional glucose metabolism, a phenotype that can be recapitulated by adoptive transfer of intestinal-associated pan-B cells. Mechanistically, IgA is a crucial link that controls intestinal and adipose tissue inflammation, intestinal permeability, microbial encroachment and the composition of the intestinal microbiome during HFD. Current glucose-lowering therapies, including metformin, affect intestinal-related IgA+ B cell populations in mice, while bariatric surgery regimen alters the level of fecal secretory IgA in humans. These findings identify intestinal IgA+ immune cells as mucosal mediators of whole-body glucose regulation in diet-induced metabolic disease.


Assuntos
Imunoglobulina A/imunologia , Resistência à Insulina , Obesidade/imunologia , Tecido Adiposo/imunologia , Animais , Linfócitos B/imunologia , Estudos de Coortes , Fezes/microbiologia , Microbioma Gastrointestinal , Glucose/metabolismo , Humanos , Intestinos/imunologia , Masculino , Camundongos , Obesidade/metabolismo , Obesidade/microbiologia
9.
J Immunol ; 201(2): 700-713, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29884704

RESUMO

In the immune system, degranulation/exocytosis from lymphocytes is crucial for life through facilitating eradication of infected and malignant cells. Dysfunction of the NK cell exocytosis process has been implicated with devastating immune diseases, such as familial hemophagocytic lymphohistiocytosis, yet the underlying molecular mechanisms of such processes have remained elusive. In particular, although the lytic granule exocytosis from NK cells is strictly Ca2+-dependent, the molecular identity of the Ca2+ sensor has yet to be identified. In this article, we show multiple lines of evidence in which point mutations in aspartic acid residues in both C2 domains of human Munc13-4, whose mutation underlies familial hemophagocytic lymphohistiocytosis type 3, diminished exocytosis with dramatically altered Ca2+ sensitivity in both mouse primary NK cells as well as rat mast cell lines. Furthermore, these mutations within the C2 domains severely impaired NK cell cytotoxicity against malignant cells. Total internal reflection fluorescence microscopy analysis revealed that the mutations strikingly altered Ca2+ dependence of fusion pore opening of each single granule and frequency of fusion events. Our results demonstrate that both C2 domains of Munc13-4 play critical roles in Ca2+-dependent exocytosis and cytotoxicity by regulating single-granule membrane fusion dynamics in immune cells.


Assuntos
Células Matadoras Naturais/imunologia , Linfo-Histiocitose Hemofagocítica/imunologia , Mastócitos/imunologia , Proteínas de Membrana/metabolismo , Vesículas Secretórias/metabolismo , Animais , Ácido Aspártico/genética , Sinalização do Cálcio , Degranulação Celular , Células Cultivadas , Citotoxicidade Imunológica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação/genética , Domínios Proteicos/genética , Ratos
10.
Gastroenterology ; 154(6): 1805-1821.e5, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29360461

RESUMO

BACKGROUND & AIMS: Pancreatic acinar cells are polarized epithelial cells that store enzymes required for digestion as inactive zymogens, tightly packed at the cell apex. Stimulation of acinar cells causes the zymogen granules to fuse with the apical membrane, and the cells undergo exocytosis to release proteases into the intestinal lumen. Autophagy maintains homeostasis of pancreatic acini. Syntaxin 2 (STX2), an abundant soluble N-ethyl maleimide sensitive factor attachment protein receptor in pancreatic acini, has been reported to mediate apical exocytosis. Using human pancreatic tissues and STX2-knockout (KO) mice, we investigated the functions of STX2 in zymogen granule-mediated exocytosis and autophagy. METHODS: We obtained pancreatic tissues from 5 patients undergoing surgery for pancreatic cancer and prepared 80-µm slices; tissues were exposed to supramaximal cholecystokinin octapeptide (CCK-8) or ethanol and a low concentration of CCK-8 and analyzed by immunoblot and immunofluorescence analyses. STX2-KO mice and syntaxin 2+/+ C57BL6 mice (controls) were given intraperitoneal injections of supramaximal caerulein (a CCK-8 analogue) or fed ethanol and then given a low dose of caerulein to induce acute pancreatitis, or saline (controls); pancreata were isolated and analyzed by histology and immunohistochemistry. Acini were isolated from mice, incubated with CCK-8, and analyzed by immunofluorescence microscopy or used in immunoprecipitation experiments. Exocytosis was quantified using live-cell exocytosis and Ca2+ imaging analyses and based on formation of exocytotic soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes. Dysregulations in autophagy were identified using markers, electron and immunofluorescence microscopy, and protease activation assays. RESULTS: Human pancreatic tissues and dispersed pancreatic acini from control mice exposed to CCK-8 or ethanol plus CCK-8 were depleted of STX2. STX2-KO developed more severe pancreatitis after administration of supramaximal caerulein or a 6-week ethanol diet compared with control. Acini from STX2-KO mice had increased apical exocytosis after exposure to CCK-8, as well as increased basolateral exocytosis, which led to ectopic release of proteases. These increases in apical and basolateral exocytosis required increased formation of fusogenic soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes, mediated by STX3 and STX4. STX2 bound ATG16L1 and prevented it from binding clathrin. Deletion of STX2 from acini increased binding of AT16L1 to clathrin, increasing formation of pre-autophagosomes and inducing autophagy. Induction of autophagy promoted the CCK-8-induced increase in autolysosome formation and the activation of trypsinogen. CONCLUSIONS: In studies of human pancreatic tissues and pancreata from STX2-KO and control mice, we found STX2 to block STX3- and STX4-mediated fusion of zymogen granules with the plasma membrane and exocytosis and prevent binding of ATG16L1 to clathrin, which contributes to induction of autophagy. Exposure of pancreatic tissues to CCK-8 or ethanol depletes acinar cells of STX2, increasing basolateral exocytosis and promoting autophagy induction, leading to activation of trypsinogen.


Assuntos
Autofagia/genética , Exocitose/genética , Pâncreas/citologia , Pancreatite/genética , Sintaxina 1/metabolismo , Células Acinares/metabolismo , Animais , Membrana Celular/metabolismo , Ceruletídeo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirurgia , Pancreatite/induzido quimicamente , Vesículas Secretórias/fisiologia , Tripsinogênio/metabolismo
11.
Front Physiol ; 8: 965, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29238304

RESUMO

Background: Waist circumference has been correlated with the risk of hyperuricemia. Whether neck circumference is also associated with hyperuricemia has not been assessed. This study aimed to investigate whether neck circumference is associated with hyperuricemia. Methods: This study population from Beijing is part of the larger China-wide Risk Evaluation of Cancers in Chinese Diabetic Individuals: a lONgitudinal (REACTION) study. For this Beijing sub-center cross-sectional study, a total of 8971 subjects were recruited. Gender-specific multivariable-adjusted regression analyses were conducted to analyze the association of neck circumference and waist circumference with hyperuricemia and the association of neck circumference with serum uric acid levels in the non-hyperuricemia population. Results: After adjusting for confounding variables, regression analyses showed that neck circumference was positively associated with hyperuricemia [OR, 2.61 (1.86-3.67) for males and 3.27 (2.53-4.22) for females] in both genders; further, neck circumference was also positively associated with serum uric acid levels in non-hyperuricemia subjects [b, 2.58 (1.76-3.39) for males and 4.27 (3.70-4.84) for females] in both genders. Additionally, we demonstrated that neck circumference was similar to waist circumference in terms of the strength of association (OR, 3.03 for waist circumference vs. 2.61 for neck circumference in males, and 3.50 vs. 3.27 for females) with hyperuricemia and the ability to predict hyperuricemia (AUC, 0.63 for waist circumference vs. 0.61 for neck circumference in males, and 0.66 vs. 0.66 in females). Conclusion: Neck circumference is positively and independently associated with hyperuricemia in both genders and is also associated with serum uric acid levels in the non-hyperuricemia population.

12.
mBio ; 8(5)2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974617

RESUMO

Intestinal mucus secretion is critical in maintaining mucosal host defense against a myriad of pathogens by preventing direct association with the epithelium. Entamoeba histolytica specifically binds colonic MUC2 mucin and also induces potent hypersecretion from goblet cells; however, characterization of the nature of the mechanisms controlling mucus release remains elusive. In this report, we identify vesicle SNARE vesicle-associated membrane protein 8 (VAMP8) present on mucin granules as orchestrating regulated exocytosis in human goblet cells in response to the presence of E. histolytica VAMP8 was specifically activated during E. histolytica infection, and ablation of VAMP8 led to impaired mucin secretion. As a consequence, loss of VAMP8 increased E. histolytica adherence to epithelial cells associated with enhanced cell death through apoptosis characterized by caspase 3 and 9 cleavages and DNA fragmentation. With the mucosal barrier compromised in Vamp8-/- animals, E. histolytica induced an aggressive proinflammatory response with elevated levels of interleukin-1 alpha (IL-1α), IL-1ß, and tumor necrosis factor alpha (TNF-α) secretion. This report is the first to characterize regulated mucin exocytosis in intestinal goblet cells in response to a pathogen and the downstream consequences of improper mucin secretion in mucosal barrier defense.IMPORTANCE The intestinal tract is exposed to countless substances and pathogens, and yet homeostasis is maintained, in part by the mucus layer that houses the microbiota and spatially separates potential threats from the underlying single layer of epithelium. Despite the critical role of mucus in innate host defense, characterization of the mechanisms by which mucus is secreted from specialized goblet cells in the gut remains elusive. Here, we describe the machinery that regulates mucus secretion as well as the consequence during infection with the colonic pathogen Entamoeba histolytica Abolishment of the key machinery protein VAMP8 abrogated mucus release in cultured human colonic goblet cells and during E. histolytica infection in Vamp8-/- mice, which showed enhanced amoeba contact and killing of epithelial cells, triggering a potent proinflammatory response. This report highlights the importance of the VAMP8 secretory machinery in facilitating mucus release from intestinal goblet cells and the dire consequences that occur during disease pathogenesis if these pathways are not functional.


Assuntos
Entamoeba histolytica/fisiologia , Exocitose , Células Caliciformes/fisiologia , Imunidade Inata , Mucinas/metabolismo , Proteínas R-SNARE/metabolismo , Animais , Linhagem Celular , Entamoeba histolytica/patogenicidade , Células Epiteliais , Células Caliciformes/microbiologia , Camundongos , Mucina-2/metabolismo , Proteínas R-SNARE/deficiência , Proteínas R-SNARE/genética
13.
J Vis Exp ; (127)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28930993

RESUMO

Insulin secretion plays a central role in glucose homeostasis under normal physiological conditions as well as in disease. Current approaches to study insulin granule exocytosis either use electrophysiology or microscopy coupled to the expression of fluorescent reporters. However most of these techniques have been optimized for clonal cell lines or require dissociating pancreatic islets. In contrast, the method presented here allows for real time visualization of insulin granule exocytosis in intact pancreatic islets. In this protocol, we first describe the viral infection of isolated pancreatic islets with adenovirus that encodes a pH-sensitive green fluorescent protein (GFP), pHluorin, coupled to neuropeptide Y (NPY). Second, we describe the confocal imaging of islets five days after viral infection and how to monitor the insulin granule secretion. Briefly, the infected islets are placed on a coverslip on an imaging chamber and imaged under an upright laser-scanning confocal microscope while being continuously perfused with extracellular solution containing various stimuli. Confocal images spanning 50 µm of the islet are acquired as time-lapse recordings using a fast-resonant scanner. The fusion of insulin granules with the plasma membrane can be followed over time. This procedure also allows for testing a battery of stimuli in a single experiment, is compatible with both mouse and human islets, and can be combined with various dyes for functional imaging (e.g., membrane potential or cytosolic calcium dyes).


Assuntos
Grânulos Citoplasmáticos/metabolismo , Exocitose/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Microscopia Confocal/métodos , Neuropeptídeo Y/metabolismo , Animais , Humanos , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Camundongos
14.
J Biol Chem ; 292(14): 5957-5969, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28242761

RESUMO

A genuine understanding of human exocrine pancreas biology and pathobiology has been hampered by a lack of suitable preparations and reliance on rodent models employing dispersed acini preparations. We have developed an organotypic slice preparation of the normal portions of human pancreas obtained from cancer resections. The preparation was assessed for physiologic and pathologic responses to the cholinergic agonist carbachol (Cch) and cholecystokinin (CCK-8), including 1) amylase secretion, 2) exocytosis, 3) intracellular Ca2+ responses, 4) cytoplasmic autophagic vacuole formation, and 5) protease activation. Cch and CCK-8 both dose-dependently stimulated secretory responses from human pancreas slices similar to those previously observed in dispersed rodent acini. Confocal microscopy imaging showed that these responses were accounted for by efficient apical exocytosis at physiologic doses of both agonists and by apical blockade and redirection of exocytosis to the basolateral plasma membrane at supramaximal doses. The secretory responses and exocytotic events evoked by CCK-8 were mediated by CCK-A and not CCK-B receptors. Physiologic agonist doses evoked oscillatory Ca2+ increases across the acini. Supraphysiologic doses induced formation of cytoplasmic autophagic vacuoles and activation of proteases (trypsin, chymotrypsin). Maximal atropine pretreatment that completely blocked all the Cch-evoked responses did not affect any of the CCK-8-evoked responses, indicating that rather than acting on the nerves within the pancreas slice, CCK cellular actions directly affected human acinar cells. Human pancreas slices represent excellent preparations to examine pancreatic cell biology and pathobiology and could help screen for potential treatments for human pancreatitis.


Assuntos
Exocitose , Técnicas de Preparação Histocitológica/métodos , Modelos Biológicos , Pâncreas Exócrino/metabolismo , Pancreatite/metabolismo , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pâncreas Exócrino/patologia , Pancreatite/patologia
15.
EBioMedicine ; 16: 262-274, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28163042

RESUMO

Reduced pancreatic islet levels of Munc18a/SNARE complex proteins have been postulated to contribute to the deficient glucose-stimulated insulin secretion (GSIS) in type-2 diabetes (T2D). Whereas much previous work has purported Munc18a/SNARE complex (Syntaxin-1A/VAMP-2/SNAP25) to be primarily involved in predocked secretory granule (SG) fusion, less is known about newcomer SGs that undergo minimal docking time at the plasma membrane before fusion. Newcomer SG fusion has been postulated to involve a distinct SM/SNARE complex (Munc18b/Syntaxin-3/VAMP8/SNAP25), whose levels we find also reduced in islets of T2D humans and T2D Goto-Kakizaki (GK) rats. Munc18b overexpression by adenovirus infection (Ad-Munc18b), by increasing assembly of Munc18b/SNARE complexes, mediated increased fusion of not only newcomer SGs but also predocked SGs in T2D human and GK rat islets, resulting in rescue of the deficient biphasic GSIS. Infusion of Ad-Munc18b into GK rat pancreas led to sustained improvement in glucose homeostasis. However, Munc18b overexpression in normal islets increased only newcomer SG fusion. Therefore, Munc18b could potentially be deployed in human T2D to rescue the deficient GSIS.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Homeostase , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas Munc18/metabolismo , Idoso , Animais , Western Blotting , Diabetes Mellitus Tipo 2/genética , Feminino , Humanos , Secreção de Insulina , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Complexos Multiproteicos/metabolismo , Proteínas Munc18/genética , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Ratos Endogâmicos , Proteína 25 Associada a Sinaptossoma/metabolismo
16.
Biochem Biophys Res Commun ; 484(1): 152-158, 2017 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-28088520

RESUMO

Pancreatic cancer (PC) is an aggressive malady with proclivity for early metastasis. Overexpression of toll-like receptor 4 (TLR4) in pancreatic ductal adenocarcinoma, the most common type of pancreatic malignancy, correlates to tumor size, lymph node involvement, venous invasion and pathological stage. Lipopolysaccharides (LPS) are natural TLR4 ligands that have been shown to increase the invasive ability of PC cells. However, rapid inactivation of circulating LPS and low systemic absorption of inhaled LPS from the bronchoalveolar compartment make other agonists such as saturated fatty acids more suitable to be considered for TLR4-related cell invasiveness. Interestingly, PC risk was strongly associated to intake of saturated fat from animal food sources, in particular to consumption of saturated palmitic acid (PA). In the present study, we investigated the influence of PA on the invasive capacity of human PC cells AsPC-1. Using specific inhibitors, we found that PA stimulation of these tumor cells induced a TLR4-mediated cell invasion. Our results also indicate that the signaling events downstream of TLR4 involved generation of reactive oxygen species, activation of nuclear factor-kappa beta, and secretion and activation of matrix metalloproteinase 9 (MMP-9). Furthermore, PA stimulation decreased the levels of the micro RNA 29c (miR-29c). Of note, while inhibition of miR-29c increased MMP-9 mRNA levels, MMP-9 secretion and activation, and invasiveness, miR-29c mimic abrogated all these PA-stimulated effects. These results strongly suggest that miR-29c could be an attractive potential pharmacological agent for antitumoral therapy in PC.


Assuntos
Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Invasividade Neoplásica , Ácido Palmítico/farmacologia , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Linhagem Celular Tumoral , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/metabolismo
17.
Diabetes ; 65(7): 1962-76, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27207520

RESUMO

Synaptotagmin (Syt)-7, a major component of the exocytotic machinery in neurons, is also the major Syt in rodent pancreatic ß-cells shown to mediate glucose-stimulated insulin secretion (GSIS). However, Syt-7's precise exocytotic actions in ß-cells remain unknown. We show that Syt-7 is abundant in human ß-cells. Adenovirus-short hairpin RNA knockdown (KD) of Syt-7 in human islets reduced first- and second-phase GSIS attributed to the reduction of exocytosis of predocked and newcomer insulin secretory granules (SGs). Glucose stimulation expectedly induced Syt-7 association in a Ca(2+)-dependent manner with syntaxin-3 and syntaxin-1A soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes known to mediate exocytosis of newcomer and predocked SGs, respectively. However, Syt-7-KD did not disrupt SNARE complex assembly. Instead, electron microscopy analysis showed that Syt-7-KD reduced the recruitment of SGs to the plasma membrane after glucose-stimulated depletion, which could not be rescued by glucagon-like peptide 1 pretreatment. To assess the possibility that this new action of Syt-7 on SG recruitment may involve calmodulin (CaM), pretreatment of islets with CaM blocker calmidazolium showed effects very similar to those of Syt-7-KD. Syt-7 therefore plays a novel more dominant function in the replenishment of releasable SG pools in human ß-cells than its previously purported role in exocytotic fusion per se.


Assuntos
Exocitose/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Vesículas Secretórias/metabolismo , Sinaptotagminas/metabolismo , Adulto , Idoso , Animais , Cálcio/metabolismo , Exocitose/efeitos dos fármacos , Feminino , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glucose/farmacologia , Humanos , Imidazóis/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Proteínas Qa-SNARE/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas SNARE/metabolismo
18.
J Biol Chem ; 290(41): 25045-61, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26272612

RESUMO

GLP1 activates its receptor, GLP1R, to enhance insulin secretion. The activation and transduction of GLP1R requires complex interactions with a host of accessory proteins, most of which remain largely unknown. In this study, we used membrane-based split ubiquitin yeast two-hybrid assays to identify novel GLP1R interactors in both mouse and human islets. Among these, ATP6ap2 (ATPase H(+)-transporting lysosomal accessory protein 2) was identified in both mouse and human islet screens. ATP6ap2 was shown to be abundant in islets including both alpha and beta cells. When GLP1R and ATP6ap2 were co-expressed in beta cells, GLP1R was shown to directly interact with ATP6ap2, as assessed by co-immunoprecipitation. In INS-1 cells, overexpression of ATP6ap2 did not affect insulin secretion; however, siRNA knockdown decreased both glucose-stimulated and GLP1-induced insulin secretion. Decreases in GLP1-induced insulin secretion were accompanied by attenuated GLP1 stimulated cAMP accumulation. Because ATP6ap2 is a subunit required for V-ATPase assembly of insulin granules, it has been reported to be involved in granule acidification. In accordance with this, we observed impaired insulin granule acidification upon ATP6ap2 knockdown but paradoxically increased proinsulin secretion. Importantly, as a GLP1R interactor, ATP6ap2 was required for GLP1-induced Ca(2+) influx, in part explaining decreased insulin secretion in ATP6ap2 knockdown cells. Taken together, our findings identify a group of proteins that interact with the GLP1R. We further show that one interactor, ATP6ap2, plays a novel dual role in beta cells, modulating both GLP1R signaling and insulin processing to affect insulin secretion.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Receptores de Superfície Celular/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Células CHO , Cálcio/metabolismo , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Técnicas de Silenciamento de Genes , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Humanos , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Ligação Proteica , ATPases Translocadoras de Prótons/deficiência , ATPases Translocadoras de Prótons/genética , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , ATPases Vacuolares Próton-Translocadoras/deficiência , ATPases Vacuolares Próton-Translocadoras/genética
19.
J Biol Chem ; 290(30): 18757-69, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25969539

RESUMO

Zinc plays an essential role in the regulation of pancreatic ß cell function, affecting important processes including insulin biosynthesis, glucose-stimulated insulin secretion, and cell viability. Mutations in the zinc efflux transport protein ZnT8 have been linked with both type 1 and type 2 diabetes, further supporting an important role for zinc in glucose homeostasis. However, very little is known about how cytosolic zinc is controlled by zinc influx transporters (ZIPs). In this study, we examined the ß cell and islet ZIP transcriptome and show consistent high expression of ZIP6 (Slc39a6) and ZIP7 (Slc39a7) genes across human and mouse islets and MIN6 ß cells. Modulation of ZIP6 and ZIP7 expression significantly altered cytosolic zinc influx in pancreatic ß cells, indicating an important role for ZIP6 and ZIP7 in regulating cellular zinc homeostasis. Functionally, this dysregulated cytosolic zinc homeostasis led to impaired insulin secretion. In parallel studies, we identified both ZIP6 and ZIP7 as potential interacting proteins with GLP-1R by a membrane yeast two-hybrid assay. Knock-down of ZIP6 but not ZIP7 in MIN6 ß cells impaired the protective effects of GLP-1 on fatty acid-induced cell apoptosis, possibly via reduced activation of the p-ERK pathway. Therefore, our data suggest that ZIP6 and ZIP7 function as two important zinc influx transporters to regulate cytosolic zinc concentrations and insulin secretion in ß cells. In particular, ZIP6 is also capable of directly interacting with GLP-1R to facilitate the protective effect of GLP-1 on ß cell survival.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Diabetes Mellitus/genética , Células Secretoras de Insulina/patologia , Proteínas de Neoplasias/metabolismo , Zinco/metabolismo , Animais , Apoptose , Proteínas de Transporte de Cátions/biossíntese , Proteínas de Transporte de Cátions/genética , Citosol/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Homeostase , Humanos , Insulina/genética , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo
20.
Mol Metab ; 4(5): 418-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25973389

RESUMO

OBJECTIVE: Pancreatic beta-cells express three Munc18 isoforms. Much is known about the roles of Munc18a (pre-docked secretory granules-SGs) and Munc18b (newcomer SGs and SG-SG fusion) in insulin exocytosis. Although shown to influence glucose-stimulated insulin secretion (GSIS) in rodents the precise role of Munc18c in insulin SG exocytosis has not been elucidated. We here examined the role of Munc18c in human pancreatic beta-cells. METHODS: Munc18c-shRNA/RFP lenti-virus (versus control virus) was used to knock down the expression level of Munc18c in human islets or single beta-cells. Insulin secretion and granule exocytosis were measured by performing islets perifusion, single-cell patch clamp capacitance measurements and total internal reflection fluorescence microscopy (TIRFM). RESULTS: Munc18c is most abundant in the cytosol of human beta-cells. Endogenous function of Munc18c was assessed by knocking down (KD) its islet expression by 70% employing lenti-shRNA virus. Munc18c-KD caused reduction in cognate syntaxin-4 islet expression but not in other exocytotic proteins, resulting in the reduction in GSIS in first- (by 42%) and second phases (by 35%). Single cell analyses of RFP-tagged Munc18c-KD beta-cells by patch clamp capacitance measurements showed inhibition in both readily-releasable pool (by 52%) and mobilization from the reserve pool (by 57%). TIRFM to assess single SG behavior showed that Munc18c-KD inhibition of first phase GSIS was attributed to reduction in exocytosis of pre-docked and newcomer SGs, and second phase inhibition attributed entirely to reduction in newcomer SG fusion (SGs that undergo minimal residence or docking time at the plasma membrane before fusion). CONCLUSION: Munc18c is involved in the distinct molecular machineries that affect exocytosis of both predocked and newcomer SG pools that underlie Munc18c's role in first and second phases of GSIS, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA