Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 17(1): 168, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367634

RESUMO

BACKGROUND: Increasing efforts have been made to assess the potential of Escherichia coli strains for the production of complex recombinant proteins. Since a considerable part of therapeutic proteins are glycoproteins, the lack of the post-translational attachment of sugar moieties in standard E. coli expression strains represents a major caveat, thus limiting the use of E. coli based cell factories. The establishment of an E. coli expression system capable of protein glycosylation could potentially facilitate the production of therapeutics with a putative concomitant reduction of production costs. RESULTS: The previously established E. coli strain expressing the soluble form of the functional human-derived glycosyltransferase polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-T2) was further modified by co-expressing the UDP-GlcNAc 4-epimerase WbgU derived from Plesiomonas shigelloides. This enables the conversion of uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc) to the sugar donor uridine 5'-diphospho-N-acetylgalactosamine (UDP-GalNAc) in the bacterial cytoplasm. Initially, the codon-optimised gene wbgU was inserted into a pET-derived vector and a Tobacco Etch Virus (TEV) protease cleavable polyhistidine-tag was translationally fused to the C- terminus of the amino acid sequence. The 4-epimerase was subsequently expressed and purified. Following the removal of the polyhistidine-tag, WbgU was analysed by circular dichroism spectroscopy to determine folding state and thermal transitions of the protein. The in vitro activity of WbgU was validated by employing a modified glycosyltransferase assay. The conversion of UDP-GlcNAc to UDP-GalNAc was shown by capillary electrophoresis analysis. Using a previously established chaperone pre-/co- expression platform, the in vivo activity of both glycosyltransferase GalNAc-T2 and 4-epimerase WbgU was assessed in E. coli, in combination with a mucin 10-derived target protein. Monitoring glycosylation by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS), the results clearly indicated the in vivo glycosylation of the mucin-derived acceptor peptide. CONCLUSION: In the present work, the previously established E. coli- based expression system was further optimized and the potential for in vivo O-glycosylation was shown by demonstrating the transfer of sugar moieties to a mucin-derived acceptor protein. The results offer the possibility to assess the practical use of the described expression platform for in vivo glycosylations of important biopharmaceutical compounds in E. coli.


Assuntos
Escherichia coli/metabolismo , Mucinas/metabolismo , Sequência de Aminoácidos , Carboidratos Epimerases/isolamento & purificação , Carboidratos Epimerases/metabolismo , Dicroísmo Circular , Glicosilação , Mucinas/química , N-Acetilgalactosaminiltransferases/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
2.
Microb Cell Fact ; 14: 3, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25582753

RESUMO

BACKGROUND: Recombinant protein-based therapeutics have become indispensable for the treatment of many diseases. They are produced using well-established expression systems based on bacteria, yeast, insect and mammalian cells. The majority of therapeutic proteins are glycoproteins and therefore the post-translational attachment of sugar residues is required. The development of an engineered Escherichia coli-based expression system for production of human glycoproteins could potentially lead to increased yields, as well as significant decreases in processing time and costs. RESULTS: This work describes the expression of functional human-derived glycosyltransferase UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 2 (GalNAcT2) in a recombinant E. coli strain. For expression, a codon-optimised gene encoding amino acids 52-571 of GalNAcT2 lacking the transmembrane N-terminal domain was inserted into a pET-23 derived vector encoding a polyhistidine-tag which was translationally fused to the N-terminus of the glycosyltransferase (HisDapGalNAcT2). The glycosyltransferase was produced in E. coli using a recently published expression system. Soluble HisDapGalNAcT2 produced in SHuffle® T7 host cells was purified using nickel affinity chromatography and was subsequently analysed by size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS) and circular dichroism spectroscopy to determine molecular mass, folding state and thermal transitions of the protein. The activity of purified HisDapGalNAcT2 was monitored using a colorimetric assay based on the release of phosphate during transfer of glycosyl residues to a model acceptor peptide or, alternatively, to the granulocyte-colony stimulating growth factor (G-CSF). Modifications were assessed by Matrix Assisted Laser Desorption Ionization Time-of-flight Mass Spectrometry analysis (MALDI-TOF-MS) and Electrospray Mass Spectrometry analysis (ESI-MS). The results clearly indicate the glycosylation of the acceptor peptide and of G-CSF. CONCLUSION: In the present work, we isolated a human-derived glycosyltransferase by expressing soluble HisDapGalNAcT2 in E. coli. The functional activity of the enzyme was shown in vitro. Further investigations are needed to assess the potential of in vivo glycosylation in E. coli.


Assuntos
N-Acetilgalactosaminiltransferases/metabolismo , Sequência de Aminoácidos , Cromatografia de Afinidade , Cromatografia em Gel , Dicroísmo Circular , Colorimetria , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glicosilação , Fator Estimulador de Colônias de Granulócitos/metabolismo , Histidina/genética , Histidina/metabolismo , Humanos , Immunoblotting , Dados de Sequência Molecular , Peso Molecular , N-Acetilgalactosaminiltransferases/genética , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Dobramento de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Polipeptídeo N-Acetilgalactosaminiltransferase
3.
J Med Chem ; 51(9): 2853-7, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18357975

RESUMO

Macbecin compares favorably to geldanamycin as an Hsp90 inhibitor, being more soluble, stable, more potently inhibiting ATPase activity (IC50 = 2 microM) and binding with higher affinity (Kd = 0.24 microM). Structural studies reveal significant differences in their Hsp90 binding characteristics, and macbecin-induced tumor cell growth inhibition is accompanied by characteristic degradation of Hsp90 client proteins. Macbecin significantly reduced tumor growth rates (minimum T/C: 32%) in a DU145 murine xenograft. Macbecin thus represents an attractive lead for further optimization.


Assuntos
Antineoplásicos/química , Benzoquinonas/química , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Lactamas Macrocíclicas/química , Animais , Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90/biossíntese , Humanos , Lactamas Macrocíclicas/farmacologia , Camundongos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Termodinâmica , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA