Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 40(12): 111358, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130489

RESUMO

Many breast cancer (BC) patients suffer from complications of metastatic disease. To form metastases, cancer cells must become migratory and coordinate both invasive and proliferative programs at distant organs. Here, we identify srGAP1 as a regulator of a proliferative-to-invasive switch in BC cells. High-resolution light-sheet microscopy demonstrates that BC cells can form actin-rich protrusions during extravasation. srGAP1low cells display a motile and invasive phenotype that facilitates their extravasation from blood vessels, as shown in zebrafish and mouse models, while attenuating tumor growth. Interestingly, a population of srGAP1low cells remain as solitary disseminated tumor cells in the lungs of mice bearing BC tumors. Overall, srGAP1low cells have increased Smad2 activation and TGF-ß2 secretion, resulting in increased invasion and p27 levels to sustain quiescence. These findings identify srGAP1 as a mediator of a proliferative to invasive phenotypic switch in BC cells in vivo through a TGF-ß2-mediated signaling axis.


Assuntos
Actinas , Fator de Crescimento Transformador beta2 , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Camundongos , Peixe-Zebra
2.
J Cell Physiol ; 237(8): 3222-3238, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35696489

RESUMO

In this article, a review of a series of applications of atomic force microscopy (AFM) and fluidic Atomic Force Microscopy (fluidic AFM, hereafter fluidFM) in single-cell studies is presented. AFM applications involving single-cell and extracellular vesicle (EV) studies, colloidal force spectroscopy, and single-cell adhesion measurements are discussed. FluidFM is an offshoot of AFM that combines a microfluidic cantilever with AFM and has enabled the research community to conduct biological, pathological, and pharmacological studies on cells at the single-cell level in a liquid environment. In this review, capacities of fluidFM are discussed to illustrate (1) the speed with which sequential measurements of adhesion using coated colloid beads can be done, (2) the ability to assess lateral binding forces of endothelial or epithelial cells in a confluent cell monolayer in an appropriate physiological environment, and (3) the ease of measurement of vertical binding forces of intercellular adhesion between heterogeneous cells. Furthermore, key applications of fluidFM are reviewed regarding to EV absorption, manipulation of a single living cell by intracellular injection, sampling of cellular fluid from a single living cell, patch clamping, and mass measurements of a single living cell.


Assuntos
Microfluídica , Microscopia de Força Atômica , Análise de Célula Única , Adesão Celular , Contagem de Células , Células Endoteliais , Células Epiteliais , Vesículas Extracelulares , Microscopia de Força Atômica/métodos
3.
J Biol Chem ; 297(5): 101315, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34678311

RESUMO

Coagulopathy is associated with both inflammation and infection, including infections with novel severe acute respiratory syndrome coronavirus-2, the causative agent Coagulopathy is associated with both inflammation and infection, including infection with novel severe acute respiratory syndrome coronavirus-2, the causative agent of COVID-19. Clot formation is promoted via cAMP-mediated secretion of von Willebrand factor (vWF), which fine-tunes the process of hemostasis. The exchange protein directly activated by cAMP (EPAC) is a ubiquitously expressed intracellular cAMP receptor that plays a regulatory role in suppressing inflammation. To assess whether EPAC could regulate vWF release during inflammation, we utilized our EPAC1-null mouse model and revealed increased secretion of vWF in endotoxemic mice in the absence of the EPAC1 gene. Pharmacological inhibition of EPAC1 in vitro mimicked the EPAC1-/- phenotype. In addition, EPAC1 regulated tumor necrosis factor-α-triggered vWF secretion from human umbilical vein endothelial cells in a manner dependent upon inflammatory effector molecules PI3K and endothelial nitric oxide synthase. Furthermore, EPAC1 activation reduced inflammation-triggered vWF release, both in vivo and in vitro. Our data delineate a novel regulatory role for EPAC1 in vWF secretion and shed light on the potential development of new strategies to control thrombosis during inflammation.


Assuntos
Células Endoteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de von Willebrand/metabolismo , Animais , COVID-19/metabolismo , Modelos Animais de Doenças , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Inflamação/metabolismo , Camundongos , Camundongos Knockout
4.
Life Sci ; 221: 1-12, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30738042

RESUMO

Plasmin-mediated fibrinolysis at the surface of vascular endothelial cells (SVEC) plays a key role in maintaining vascular hemostasis, in which the cAMP pathway participates. After externalization to the SVEC, annexin A2 (ANXA2) serves as a platform for conversion of plasminogen to plasmin. Here we describe a regulatory role of the exchange protein directly activated by cAMP (EPAC) in ANXA2 externalization and vascular fibrinolysis. Knockout of EPAC1 in mice results in a decreased ANXA2 expression on the SVEC associated with increased fibrin deposition and fibrinolytic dysfunction. Reduced levels of EPAC1 are also found in endocardial tissues beneath atrial mural thrombi in patients. Notably, administration of recombinant ANXA2 ameliorates fibrinolytic dysfunction in the EPAC1-null mice. Mechanistically, EPAC1 regulates the SVEC plasminogen conversion depended on ANXA2. EPAC1 promotes tyrosine-23 phosphorylation of ANXA2, a prerequisite for its recruitment to the SVEC. Our data thus reveal a novel regulatory role for EPAC1 in vascular fibrinolysis.


Assuntos
Anexina A2/metabolismo , Fibrinólise/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Animais , Membrana Celular , AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Endotélio Vascular , Fibrinolisina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Homeostase , Humanos , Camundongos , Camundongos Knockout , Fosforilação , Plasminogênio/metabolismo , Proteólise
5.
Photochem Photobiol ; 94(4): 744-751, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29418006

RESUMO

Light of certain wavelengths can be used to inactivate pathogens. Whole blood is opaque; thus, the penetration of light is reduced. Here, we overcame this limitation using a thin transparent tube that is illuminated from all angles. Three light-based techniques were evaluated: photodynamic therapy (PDT) using a 660-nm light and antibody-photosensitizer conjugates, ultraviolet, and violet light. We observed a reduction of 55-71% of Staphylococcus aureus after 5 h of exposure (starting concentration 107  CFU mL-1 ) and an 88-97% reduction in methicillin-resistant Staphylococcus aureus (MRSA) (starting 104  CFU mL-1 ). An 83-92% decrease for S. aureus and 98-99.9% decrease for MRSA were observed when combined with an immunocapture approach. Complete blood count with differential analysis did not reveal any significant changes in the blood cell numbers. Genotoxicity studies showed that violet and ultraviolet did not induce any significant level of single strand breaks and alkali labile sites in the peripheral blood mononuclear cells (PBMC). In contrast, ultraviolet did induce a very low level of cyclobutane pyrimidine dimers, a UV damage indicator. PDT generated a significant level of single strand breaks and 8-oxoGua in these cells. The approaches showed promise for whole blood pathogen inactivation with minimal collateral damage to PBMC.


Assuntos
Atividade Bactericida do Sangue , Luz , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Fotoquimioterapia/métodos , Staphylococcus aureus/efeitos da radiação , Animais , Contagem de Células Sanguíneas , Contagem de Colônia Microbiana , Ensaio Cometa , Imunoconjugados/farmacologia , Macaca fascicularis , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Fármacos Fotossensibilizantes/farmacologia , Estudo de Prova de Conceito , Dímeros de Pirimidina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/isolamento & purificação
6.
PLoS One ; 10(7): e0133194, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26176235

RESUMO

In this preliminary effort, we use a commercially available and chemically modified tube to selectively capture circulating tumor cells (CTCs) from the blood stream by immobilizing human anti-EpCAM antibodies on the tube's interior surface. We describe the requisite and critical steps required to modify a tube into a cancer cell-capturing device. Using these simple modifications, we were able to capture or entrap about 85% of cancer cells from suspension and 44% of cancer cells from spiked whole blood. We also found that the percentage of cells captured was dependent on the tube's length and also the number of cancer cells present. It is our strong belief that with the utilization of appropriate tube lengths and procedures, we can ensure capture and removal of nearly the entire CTC population in whole blood. Importantly after a patient's entire blood volume has circulated through the tube, the tube can then be trypsinized to release the captured live CTCs for further analysis and testing.


Assuntos
Anticorpos Imobilizados/imunologia , Antígenos de Neoplasias/imunologia , Moléculas de Adesão Celular/imunologia , Separação Celular/instrumentação , Células Neoplásicas Circulantes/patologia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Anticorpos Imobilizados/química , Linhagem Celular Tumoral , Separação Celular/métodos , Molécula de Adesão da Célula Epitelial , Citometria de Fluxo , Humanos , Masculino , Células Neoplásicas Circulantes/imunologia , Neoplasias da Próstata/imunologia
7.
PeerJ ; 3: e929, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25945318

RESUMO

Inducing cell death by heating targeted particles shows promise in cancer treatment. Here, we aim to demonstrate the feasibility of extending the use of this technique to treat and remove vascular deposits and thrombosis. We used induction heating of macrophages, which are key contributors to atherosclerosis and have demonstrated clear feasibility for heating and destroying these cells using ferromagnetic and pure iron particles. Specifically, iron particles achieved maximum temperatures of 51 ± 0.5 °C and spherical particles achieved a maximum temperature of 43.9 ± 0.2 °C (N = 6) after 30 min of inductive heating. Two days of subsequent observation demonstrated that inductive heating led to a significant reduction in cell number. Prior to induction heating, cell density was 105,000 ± 20,820 cells/ml (N = 3). This number was reduced to 6,666 ± 4,410 cells/ml for the spherical particles and 16,666 ± 9,280 cells/ml for the iron particles 24 h after inductive heating. Though cell density increased on the second day following inductive heating, the growth was minimal. Cells grew to 26,667 ± 6,670 cells/ml and 30,000 ± 15,280 cells/ml respectively. Compared to cell cultures with iron and spherical particles that were not subjected to induction heating, we observed a 97% reduction in cell count for the spherical particles and a 91% reduction for the iron particles after the first 24 h. After 48 h we observed a 95% reduction in cell growth for both spherical and iron particles. Induction heating of microparticles was thus highly effective in reducing the macrophage population and preventing their growth. These results demonstrate the feasibility of targeting cells involved in atherosclerosis and warrant further research into potential clinical applications.

8.
PLoS One ; 10(5): e0127219, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26011055

RESUMO

It is well established that metastasis through the circulatory system is primarily caused by circulating tumor cells (CTCs). In this preliminary effort, we report an approach to eliminate circulating tumor cells from the blood stream by flowing the blood though an extracorporeal tube and applying photodynamic therapy (PDT). Chlorin e6 (Ce6), a photosensitizer, was conjugated to CD44 antibody in order to target PC-3, a prostate cancer cell line. PC-3 cells were successfully stained by the Ce6-CD44 antibody conjugate. PDT was performed on whole blood spiked with stained PC-3 cells. As the blood circulated through a thin transparent medical tube, it was exposed to light of 660 nm wavelength generated by an LED array. An exposure of two minutes was sufficient to achieve selective cancer cell necrosis. In comparison, to PDT of cells growing inside a tissue culture, the PDT on thin tube exhibited significantly enhanced efficiency in cell killing, by minimizing light attenuation by blood. It suggests a new extracorporeal methodology of PDT for treating CTCs as well as other hematological pathogens.


Assuntos
Anticorpos/farmacologia , Receptores de Hialuronatos/imunologia , Células Neoplásicas Circulantes/efeitos dos fármacos , Fármacos Fotossensibilizantes/química , Porfirinas/química , Anticorpos/química , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clorofilídeos , Estudos de Viabilidade , Humanos , Imunoterapia/métodos , Masculino , Fotoquimioterapia/instrumentação , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Neoplasias da Próstata/tratamento farmacológico
9.
Appl Phys Lett ; 103(12): 123702, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-24170959

RESUMO

In the present study we engineered a micro-machined polyimide cantilever with an embedded sensing element to investigate cellular adhesion, in terms of its relative ability to stick to a cross-linker, 3,3'-dithiobis[sulfosuccinimidylpropionate], coated on the cantilever surface. To achieve this objective, we investigated adhesive properties of three human prostate cancer cell lines, namely, a bone metastasis derived human prostate cancer cell line (PC3), a brain metastasis derived human prostate cancer cell line (DU145), and a subclone of PC3 (PC3-EMT14). We found that PC3-EMT14, which displays a mesenchymal phenotype, has the least adhesion compared to PC3 and DU145, which exhibit an epithelial phenotype.

10.
Sens Lett ; 11(12): 2341-2344, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25541581

RESUMO

Cellular manipulation has been investigated by a number of techniques. In this manuscript nickel foil microcantilevers were used for magnetophoresis and manipulation of microparticles and magnetically labeled HeLa cells. The cantilevers were also used for localized heating in liquid, reaching biologically relevant temperatures. This work aims to develop cantilevers for sample enrichment, manipulation, and thermal applications, offering an inexpensive and versatile solution compatible with standard tools in research and clinical diagnostic testing, such as microwell plates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA