Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
APMIS ; 130(11): 678-685, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35959516

RESUMO

Vascular endothelium is a semi-permeable barrier that regulates the flow of nutrients, ions, cytokines and immune cells between blood and tissues. Barrier properties of endothelium, its ability to regenerate and the potential for secretion of inflammatory mediators play a crucial role in maintaining local tissue homeostasis. The lung vascular endothelial cells were shown to be infected by human rhinovirus (HRV) and generate antiviral, inflammatory and cytopathic responses. The current study reveals that in the long-time manner, the lung vascular endothelium may efficiently limit the HRV replication via the IFN-dependent 2'-5'-oligoadenylate synthetase 1 activation. This leads to the restoration of integrity accompanied by the up-regulation of adherens and tight junctions, increase of metabolic activity and proliferation rate. Secondly, HRV16-infected cells show delayed and transient up-regulation of the expression of vascular endothelial growth factor (VEGF), fibroblast growth factor, angiopoietin 1 and 2, and neuropilin-1, as well as VEGF receptors. The lung vascular endothelium infected with HRV may limit the infection, recover in time, and regain barrier properties and metabolic functions, thus leading to the restoration of integrated barrier tissue.


Assuntos
Rhinovirus , Fator A de Crescimento do Endotélio Vascular , 2',5'-Oligoadenilato Sintetase , Angiopoietina-1/metabolismo , Antivirais , Citocinas/metabolismo , Células Endoteliais , Endotélio Vascular , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Interferons , Pulmão , Neuropilina-1/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Replicação Viral
2.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683034

RESUMO

The Gastric pathogen Helicobacter pylori (HP) may influence the development of coronary heart disease (CHD). H. pylori induce reactive oxygen species (ROS), which transform cholesterol to 7-ketocholesterol (7-kCh), a CHD risk factor. Acetylsalicylic acid (ASA)-an Anti-aggregation drug used in CHD patients-may increase gastric bleeding and inflammation. We examined whether H. pylori driven ROS effects in the cell cultures of gastric epithelial cells (AGS) and vascular endothelial cells (HUVEC) progress in the milieu of 7-kCh and ASA. Cell cultures, exposed to 7-kCh or ASA alone or pulsed with the H. pylori antigenic complex-Glycine acid extract (GE), urease (UreA), cytotoxin associated gene A (CagA) protein or lipopolysaccharide (LPS), alone or with 7-kCh and ASA-were examined for ROS, apoptosis, cell integrity, interleukin (IL)-8, the activation of signal transducer, the activator of transcription 3 (STAT3), and wound healing. ASA and 7-kCh alone, and particularly in conjunction with H. pylori components, increased the ROS level and the rate of apoptosis, which was followed by cell disintegration, the activation of STAT3, and IL-8 elevation. AGS cells were unable to undergo wound healing. The cell ROS response to H. pylori components may be elevated by 7-kCh and ASA.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Antígenos de Bactérias , Aspirina/metabolismo , Aspirina/farmacologia , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Humanos , Cetocolesteróis , Espécies Reativas de Oxigênio/metabolismo
4.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806236

RESUMO

Classic atherosclerosis risk factors do not explain all cases of chronic heart disease. There is significant evidence that gut microbiota may influence the development of atherosclerosis. The widespread prevalence of chronic Helicobacter pylori (H. pylori, HP) infections suggests that HP can be the source of components that stimulate local and systemic inflammatory responses. Elevated production of reactive oxygen species during HP infection leads to cholesterol oxidation, which drives atherogenesis. The aim of this study is to explore the link between persistent HP infection and a high-fat diet in the development of proinflammatory conditions that are potentially proatherogenic. An in vivo model of Caviae porcellus infected with HP and exposed to an experimental diet was investigated for the occurrence of a proinflammatory and proatherogenic endothelial environment. Vascular endothelial primary cells exposed to HP components were tested in vitro for oxidative stress, cell activation and apoptosis. The infiltration of inflammatory cells into the vascular endothelium of animals infected with HP and exposed to a high-fat diet was observed in conjunction with an increased level of inflammatory markers systemically. The arteries of such animals were the least elastic, suggesting the role of HP in arterial stiffness. Soluble HP components induced transformation of macrophages to foam cells in vitro and influenced the endothelial life span, which was correlated with Collagen I upregulation. These preliminary results support the hypothesis that HP antigens act synergistically with a high-fat diet in the development of proatherogenic conditions.


Assuntos
Dieta Aterogênica , Dieta Hiperlipídica , Endotélio Vascular/metabolismo , Infecções por Helicobacter/complicações , Animais , Anticorpos Antibacterianos/imunologia , Aterosclerose/etiologia , Aterosclerose/microbiologia , Modelos Animais de Doenças , Células Endoteliais/microbiologia , Feminino , Células Espumosas/metabolismo , Células Espumosas/microbiologia , Gastrite/metabolismo , Gastrite/microbiologia , Cobaias , Helicobacter pylori , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoglobulina G , Inflamação , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Rigidez Vascular
5.
APMIS ; 129(3): 143-151, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33230840

RESUMO

The effect of rhinovirus on airway epithelium is very well described. However, its influence on the vascular endothelium is unknown. The current study assesses the effect of rhinovirus HRV16 on the antiviral and inflammatory response in the human vascular endothelial cells (ECs). HRV16 increased IFN-ß, RANTES, and IP-10 mRNA expression and protein release. HRV16 copy number in ECs reached maximal value 10 h after incubation. Increase in virus copies was accompanied by the enhancement of Toll- and RIG-I-like receptors: TLR3, RIG-I, and MDA5. Additionally, HRV16 increased OAS-1 and PKR mRNA expression, enzymes responsible for virus degradation and inhibition of replication. ICAM-1 blockade decreased HRV16 copy number in ECs and inhibited IFN-ß, RANTES, IP-10, OAS1, PKR, TLR3, RIG-I, and MDA5 mRNA expression increase upon subsequent induction with HRV16. The vascular endothelium may be infected by human rhinovirus and generate antiviral and inflammatory innate response. Results of the study indicate the possible involvement of the vascular endothelium in the immunopathology of rhinoviral airway infections.


Assuntos
Endotélio Vascular/imunologia , Infecções por Picornaviridae/imunologia , Rhinovirus/imunologia , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/imunologia , Endotélio Vascular/virologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/virologia , Humanos , Interferon beta/genética , Interferon beta/imunologia , Infecções por Picornaviridae/genética , Infecções por Picornaviridae/virologia , Receptores Imunológicos , Rhinovirus/genética , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia
6.
PLoS One ; 14(8): e0220636, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31390383

RESUMO

BACKGROUND: Helicobacter pylori colonizes the human gastric mucosa, causing chronic inflammation, peptic ulcers and gastric cancer. A cascade of harmful processes results from the interaction of these bacteria with the gastric epithelium. AIM: To investigate these processes in terms of upregulation of oxidative stress and cell apoptosis and downregulation of the pro-regenerative activity of cells. METHODS: We employed an in vivo guinea pig model at 7 or 28 days postinoculation with H. pylori, corresponding to an acute or chronic stage of infection, respectively, and an in vitro model of guinea pig primary gastric epithelial cells and fibroblasts treated with bacterial components: glycine acid extract (GE), urease subunit A (UreA), cytotoxin-associated gene A protein (CagA) and lipopolysaccharide (LPS). Cells were evaluated for metabolic activity (MTT reduction), myeloperoxidase (MPO) and metalloproteinase (MMP-9) secretion, lipid peroxidation (4-hydroxynonenal (4HNE)), migration (wound healing), proliferation (Ki-67 antigen) and cell apoptosis (TUNEL assay; Bcl-xL, Bax, Bcl-2 expression; caspase 3 cleavage). RESULTS: Significant infiltration of the gastric mucosa by inflammatory cells in vivo in response to H. pylori was accompanied by oxidative stress and cell apoptosis, which were more intense 7 than 28 days after inoculation. The increase in cell proliferation was more intense in chronic than acute infection. H. pylori components GE, CagA, UreA, and LPS upregulated oxidative stress and apoptosis. Only H. pylori LPS inhibited cell migration and proliferation, which was accompanied by the upregulation of MMP-9. CONCLUSIONS: H. pylori infection induces cell apoptosis in conjunction with increased oxidative stress. Elevated apoptosis protects against deleterious inflammation and neoplasia; however, it reduces cell integrity. Upregulation of cell migration and proliferation in response to injury in the milieu of GE, CagA or UreA facilitates tissue regeneration but increases the risk of neoplasia. By comparison, downregulation of cell regeneration by H. pylori LPS may promote chronic inflammation.


Assuntos
Apoptose , Proliferação de Células , Células Epiteliais/patologia , Fibroblastos/patologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/patologia , Helicobacter pylori/patogenicidade , Animais , Movimento Celular , Células Epiteliais/microbiologia , Fibroblastos/microbiologia , Mucosa Gástrica/microbiologia , Cobaias , Infecções por Helicobacter/complicações , Humanos , Inflamação , Neoplasias/etiologia , Estresse Oxidativo
7.
Int J Mol Sci ; 19(2)2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29364178

RESUMO

Chronic obstructive pulmonary disease (COPD) is associated with severe chronic inflammation that promotes irreversible tissue destruction. Moreover, the most broadly accepted cause of COPD is exposure to cigarette smoke. There is no effective cure and significantly, the mechanism behind the development and progression of this disease remains unknown. Our laboratory has demonstrated that Bruton's tyrosine kinase (Btk) is a critical regulator of pro-inflammatory processes in the lungs and that Btk controls expression of matrix metalloproteinase-9 (MMP-9) in the alveolar compartment. For this study apolipoprotein E null (ApoE-/-) mice were exposed to SHS to facilitate study in a COPD/atherosclerosis comorbidity model. We applied two types of treatments, animals received either a pharmacological inhibitor of Btk or MMP-9 specific siRNA to minimize MMP-9 expression in endothelial cells or neutrophils. We have shown that these treatments had a protective effect in the lung. We have noted a decrease in alveolar changes related to SHS induced inflammation in treated animals. In summary, we are presenting a novel concept in the field of COPD, i.e., that Btk may be a new drug target for this disease. Moreover, cell specific targeting of MMP-9 may also benefit patients affected by this disease.


Assuntos
Apolipoproteínas E/deficiência , Proteínas Tirosina Quinases/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais , Fumar/efeitos adversos , Tirosina Quinase da Agamaglobulinemia , Animais , Colágeno/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Pulmão/metabolismo , Pulmão/patologia , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Doença Pulmonar Obstrutiva Crônica/patologia , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos
8.
World J Gastroenterol ; 22(33): 7536-58, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27672275

RESUMO

AIM: To determine the impact of selected well defined Helicobacter pylori (H. pylori) antigens on gastric barrier cell turnover. METHODS: In this study, using two cellular models of gastric epithelial cells and fibroblasts, we have focused on exploring the effects of well defined H. pylori soluble components such as glycine acid extract antigenic complex (GE), subunit A of urease (UreA), cytotoxin associated gene A protein (CagA) and lipopolysaccharide (LPS) on cell turnover by comparing the wound healing capacity of the cells in terms of their proliferative and metabolic activity as well as cell cycle distribution. Toxic effects of H. pylori components have been assessed in an association with damage to cell nuclei and inhibition of signal transducer and activator of transcription 3 (STAT3) phosphorylation. RESULTS: We showed that H. pylori GE, CagA and UreA promoted regeneration of epithelial cells and fibroblasts, which is necessary for effective tissue healing. However, in vivo increased proliferative activity of these cells may constitute an increased risk of gastric neoplasia. In contrast, H. pylori LPS showed a dose-dependent influence on the process of wound healing. At a low concentration (1 ng/mL) H. pylori LPS accelerated of healing epithelial cells, which was linked to significantly enhanced cell proliferation and MTT reduction as well as lack of alterations in cell cycle and downregulation of epidermal growth factor (EGF) production as well as cell nuclei destruction. By comparison, H. pylori LPS at a high concentration (25 ng/mL) inhibited the process of wound repair, which was related to diminished proliferative activity of the cells, cell cycle arrest, destruction of cell nuclei and downregulation of the EGF/STAT3 signalling pathway. CONCLUSION: In vivo H. pylori LPS driven effects might lead to the maintenance of chronic inflammatory response and pathological disorders on the level of the gastric mucosal barrier.


Assuntos
Mucosa Gástrica/patologia , Infecções por Helicobacter/fisiopatologia , Helicobacter pylori , Neoplasias Gástricas/patologia , Estômago/patologia , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Células Epiteliais/metabolismo , Mucosa Gástrica/microbiologia , Glicina/metabolismo , Cobaias , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Humanos , Lipopolissacarídeos , Transdução de Sinais , Estômago/microbiologia , Neoplasias Gástricas/microbiologia , Urease/metabolismo , Cicatrização
9.
Acta Biochim Pol ; 63(1): 145-152, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26619253

RESUMO

Colonization of gastric tissue in humans by H. pylori Gram-negative bacteria initiates gastric and duodenal ulcers and even gastric cancers. Infections promote inflammation and damage to gastric epithelium which might be followed by the impairment of its barrier function. The role of H. pylori components in these processes has not been specified. H. pylori cytotoxicity may potentially increase in the milieu of anti-inflammatory drugs including acetylsalicylic acid (ASA). The lipid transport-associated molecule such as low density lipoprotein (LDL), which is a classic risk factor of coronary heart disease (CHD) and 7-ketocholesterol (7-kCh) a product of cholesterol oxidation, which may occur during the oxidative stress in LDL could also be considered as pro-inflammatory. The aim of this study was to evaluate the cytotoxicity of H. pylori antigens, ASA, LDL and 7-kCh towards Kato III gastric epithelial cells, on the basis of the cell ability to reduce tetrazolium salt (MTT) and morphology of cell nuclei assessed by 4',6-diamidino-2-phenylindole (DAPI) staining. Kato III cells were stimulated for 24 h, at 37°C and 5% CO2, with H. pylori antigens: cytotoxin associated gene A (CagA) protein, the urease A subunit (UreA), lipopolysaccharide (LPS) and ASA, LDL or 7-kCh. H. pylori LPS, ASA, LDL and 7-kCh, but not H. pylori glycine acid extract (GE), demonstrated cytotoxicity against Kato III cells, which was related to a diminished percentage of MTT reducing cells and to an increased cell population with the signs of DNA damage. The results suggest that damage to gastric epithelial cells can be induced independently by H. pylori antigens, ASA and endogenous lipid transport-associated molecules. During H. pylori infection in vivo, especially in CHD patients, synergistic or antagonistic interactions between these factors might possibly influence the disease course. Further study is necessary to explain these potential effects.


Assuntos
Antígenos de Bactérias/imunologia , Aspirina/farmacologia , LDL-Colesterol/fisiologia , Mucosa Gástrica/patologia , Helicobacter pylori/imunologia , Cetocolesteróis/fisiologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/imunologia , Humanos , Técnicas In Vitro
10.
Acta Biochim Pol ; 62(4): 697-706, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26610308

RESUMO

Helicobacter pylori is an etiological agent of chronic gastritis, gastric and duodenal ulcers and gastric cancers. The use of an appropriate animal model for experimental studies on the pathogenesis of H. pylori infections is necessary due to the chronic character of such infections and difficulties in identifying their early stage in humans. The aim of this study was to develop a guinea pig model of H. pylori infection and identify its microbiological, histological, serological and molecular determinants. Guinea pigs were inoculated per os with H. pylori strains: CCUG 17874 or ATCC 700312, both producing vacuolating cytotoxin A (VacA) and cytotoxin associated gene A (CagA) protein, suspended in Brucella broth with fetal calf serum (FCS) and Skirrow supplement of antibiotics. To determine H. pylori colonization, 7 and 28 days after the challenge, a panel of diagnostic methods was used. It included culturing of microorganisms from the gastric tissue, histopathological analysis of gastric sections, stained by Mayer,s haematoxylin and eosin to assess inflammatory response, by Giemsa as well as Warthin-Starry silver staining to visualise Helicobacter-like organisms (HLO) and with anti-Ki-67 antigen to assess epithelial cell proliferation. H. pylori infection was also confirmed by polymerase chain reactions (PCR) for detection in gastric tissue of ureC and cagA genes and by serological assessment of H. pylori antigens in faeces. This study showed the usefulness of microbiological, histological, immunological and molecular methods for the detection of persistent H. pylori infections in guinea pigs, which could be an appropriate model for studying H. pylori pathogenesis and the related immune response against these microbes.


Assuntos
Modelos Animais de Doenças , Infecções por Helicobacter/microbiologia , Helicobacter pylori/isolamento & purificação , Animais , Antibacterianos/farmacologia , Antígenos de Bactérias/análise , Fezes/microbiologia , Cobaias , Infecções por Helicobacter/genética , Infecções por Helicobacter/imunologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/patogenicidade , Masculino , Reação em Cadeia da Polimerase
11.
World J Cardiol ; 7(4): 187-203, 2015 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-25914788

RESUMO

In this review, we discussed the findings and concepts underlying the potential role of Helicobacter pylori (H. pylori) infections in the initiation, development or persistence of atherosclerosis and coronary heart disease (CHD). This Gram-negative bacterium was described by Marshall and Warren in 1984. The majority of infected subjects carries and transmits H. pylori with no symptoms; however, in some individuals these bacteria may cause peptic ulcers, and even gastric cancers. The widespread prevalence of H. pylori infections and the fact that frequently they remain asymptomatic may suggest that, similarly to intestinal microflora, H. pylori may deliver antigens that stimulate not only local, but also systemic inflammatory response. Recently, possible association between H. pylori infection and extragastric disorders has been suggested. Knowledge on the etiology of atherosclerosis together with current findings in the area of H. pylori infections constitute the background for the newly proposed hypothesis that those two processes may be related. Many research studies confirm the indirect association between the prevalence of H. pylori and the occurrence of CHD. According to majority of findings the involvement of H. pylori in this process is based on the chronic inflammation which might facilitate the CHD-related pathologies. It needs to be elucidated, if the infection initiate or just accelerate the formation of atheromatous plaque.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA