Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166747, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37207905

RESUMO

Neovascular inflammatory vitreoretinopathy (NIV) is a rare eye disease that ultimately leads to complete blindness and is caused by mutations in the gene encoding calpain-5 (CAPN5), with six pathogenic mutations identified. In transfected SH-SY5Y cells, five of the mutations resulted in decreased membrane association, diminished S-acylation, and reduced calcium-induced autoproteolysis of CAPN5. CAPN5 proteolysis of the autoimmune regulator AIRE was impacted by several NIV mutations. R243, L244, K250 and the adjacent V249 are on ß-strands in the protease core 2 domain. Conformational changes induced by Ca2+binding result in these ß-strands forming a ß-sheet and a hydrophobic pocket which docks W286 side chain away from the catalytic cleft, enabling calpain activation based on comparison with the Ca2+-bound CAPN1 protease core. The pathologic variants R243L, L244P, K250N, and R289W are predicted to disrupt the ß-strands, ß-sheet, and hydrophobic pocket, impairing calpain activation. The mechanism by which these variants impair membrane association is unclear. G376S impacts a conserved residue in the CBSW domain and is predicted to disrupt a loop containing acidic residues which may contribute to membrane binding. G267S did not impair membrane association and resulted in a slight but significant increase in autoproteolytic and proteolytic activity. However, G267S is also identified in individuals without NIV. Combined with the autosomal dominant pattern of NIV inheritance and evidence that CAPN5 may dimerize, the results are consistent with a dominant negative mechanism for the five pathogenic variants which resulted in impaired CAPN5 activity and membrane association and a gain-of-function for the G267S variant.


Assuntos
Neuroblastoma , Vitreorretinopatia Proliferativa , Humanos , Calpaína/genética , Calpaína/metabolismo , Vitreorretinopatia Proliferativa/genética , Vitreorretinopatia Proliferativa/patologia , Mutação
2.
Biochim Biophys Acta Mol Cell Res ; 1869(9): 119298, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35643222

RESUMO

Calpain-5 (CAPN5) is a member of the calpain family of calcium-activated neutral thiol proteases. CAPN5 is partly membrane associated, despite its lack of a transmembrane domain. Unlike classical calpains, CAPN5 contains a C-terminal C2 domain. C2 domains often have affinity to lipids, mediating membrane association. We recently reported that the C2 domain of CAPN5 was essential for its membrane association and the activation of its autolytic activity. However, despite the removal of the C2 domain by autolysis, the N-terminal fragment of CAPN5 remained membrane associated. S-acylation, also referred to as S-palmitoylation, is a reversible post-translational lipid modification of cysteine residues that promotes membrane association of soluble proteins. In the present study several S-acylated cysteine residues were identified in CAPN5 with the acyl-PEG exchange method. Data reported here demonstrate that CAPN5 is S-acylated on up to three cysteine residues including Cys-4 and Cys-512, and likely Cys-507. The D589N mutation in a potential calcium binding loop within the C2 domain interfered with the S-acylation of CAPN5, likely preventing initial membrane association. Mutating specific cysteine residues of CAPN5 interfered with both its membrane association and the activation of CAPN5 autolysis. Taken together, our results suggest that the S-acylation of CAPN5 is critical for its membrane localization which appears to favor its enzymatic activity.


Assuntos
Calpaína , Cisteína , Acilação , Cálcio/metabolismo , Calpaína/genética , Calpaína/metabolismo , Cisteína/genética , Cisteína/metabolismo , Lipoilação
3.
Am J Pathol ; 192(3): 564-578, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954207

RESUMO

The amygdala is vulnerable to multiple or "mixed" mis-aggregated proteins associated with neurodegenerative conditions that can manifest clinically with amnestic dementia; the amygdala region is often affected even at earliest disease stages. With the original intent of identifying novel dementia-associated proteins, the detergent-insoluble proteome was characterized from the amygdalae of 40 participants from the University of Kentucky Alzheimer's Disease Center autopsy cohort. These individuals encompassed a spectrum of clinical conditions (cognitively normal to severe amnestic dementia). Polypeptides from the detergent-insoluble fraction were interrogated using liquid chromatography-electrospray ionization-tandem mass spectrometry. As anticipated, portions of peptides previously associated with neurologic diseases were enriched from subjects with dementia. Among all detected peptides, Apolipoprotein E (ApoE) stood out: even more than the expected Tau, APP/Aß, and α-Synuclein peptides, ApoE peptides were strongly enriched in dementia cases, including from individuals lacking the APOE ε4 genotype. The amount of ApoE protein detected in detergent-insoluble fractions was robustly associated with levels of complement proteins C3 and C4. Immunohistochemical staining of APOE ε3/ε3 subjects' amygdalae confirmed ApoE co-localization with C4 in amyloid plaques. Thus, analyses of human amygdala proteomics indicate that rather than being only an "upstream" genetic risk factor, ApoE is an aberrantly aggregated protein in its own right, and show that the ApoE protein may play active disease-driving mechanistic roles in persons lacking the APOE ε4 allele.


Assuntos
Doença de Alzheimer , Apolipoproteínas E , Demência , Alelos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Apolipoproteínas E/metabolismo , Biomarcadores/metabolismo , Demência/genética , Demência/metabolismo , Demência/patologia , Detergentes , Genótipo , Humanos
4.
Biochim Biophys Acta Mol Cell Res ; 1868(7): 119019, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811937

RESUMO

The enzymatic characteristics of the ubiquitous calpain 5 (CAPN5) remain undescribed despite its high expression in the central nervous system and links to eye development and disease. CAPN5 contains the typical protease core domains but lacks the C terminal penta-EF hand domain of classical calpains, and instead contains a putative C2 domain. This study used the SH-SY5Y neuroblastoma cell line stably transfected with CAPN5-3xFLAG variants to assess the potential roles of the CAPN5 C2 domain in Ca2+ regulated enzyme activity and intracellular localization. Calcium dependent autoproteolysis of CAPN5 was documented and characterized. Mutation of the catalytic Cys81 to Ala or addition of EGTA prevented autolysis. Eighty µM Ca2+ was sufficient to stimulate half-maximal CAPN5 autolysis in cellular lysates. CAPN5 autolysis was inhibited by tri-leucine peptidyl aldehydes, but less effectively by di-Leu aldehydes, consistent with a more open conformation of the protease core relative to classical calpains. In silico modeling revealed a type II topology C2 domain including loops with the potential to bind calcium. Mutation of the acidic amino acid residues predicted to participate in Ca2+ binding, particularly Asp531 and Asp589, resulted in a decrease of CAPN5 membrane association. These residues were also found to be invariant in several genomes. The autolytic fragment of CAPN5 was prevalent in membrane-enriched fractions, but not in cytosolic fractions, suggesting that membrane association facilitates the autoproteolytic activity of CAPN5. Together, these results demonstrate that CAPN5 undergoes Ca2+-activated autoproteolytic processing and suggest that CAPN5 association with membranes enhances CAPN5 autolysis.


Assuntos
Domínios C2/fisiologia , Calpaína/genética , Calpaína/metabolismo , Sequência de Aminoácidos/genética , Domínios C2/genética , Movimento Celular , Ativação Enzimática/genética , Humanos , Modelos Moleculares , Mutação/genética , Conformação Proteica , Domínios Proteicos/fisiologia
5.
Hum Mol Genet ; 29(16): 2684-2697, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32691043

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the preferential death of motor neurons. Approximately 10% of ALS cases are familial and 90% are sporadic. Fused in sarcoma (FUS) is a ubiquitously expressed RNA-binding protein implicated in familial ALS and frontotemporal dementia (FTD). The physiological function and pathological mechanism of FUS are not well understood, particularly whether post-translational modifications play a role in regulating FUS function. In this study, we discovered that FUS was acetylated at lysine-315/316 (K315/K316) and lysine-510 (K510) residues in two distinct domains. Located in the nuclear localization sequence, K510 acetylation disrupted the interaction between FUS and Transportin-1, resulting in the mislocalization of FUS in the cytoplasm and formation of stress granule-like inclusions. Located in the RNA recognition motif, K315/K316 acetylation reduced RNA binding to FUS and decreased the formation of cytoplasmic inclusions. Treatment with deacetylase inhibitors also significantly reduced the inclusion formation in cells expressing ALS mutation P525L. More interestingly, familial ALS patient fibroblasts showed higher levels of FUS K510 acetylation as compared with healthy controls. Lastly, CREB-binding protein/p300 acetylated FUS, whereas both sirtuins and histone deacetylases families of lysine deacetylases contributed to FUS deacetylation. These findings demonstrate that FUS acetylation regulates the RNA binding, subcellular localization and inclusion formation of FUS, implicating a potential role of acetylation in the pathophysiological process leading to FUS-mediated ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Proteína FUS de Ligação a RNA/genética , beta Carioferinas/genética , Acetilação/efeitos dos fármacos , Adulto , Esclerose Lateral Amiotrófica/patologia , Feminino , Demência Frontotemporal/patologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Humanos , Lisina/genética , Masculino , Pessoa de Meia-Idade , Sinais de Localização Nuclear/genética , Domínios Proteicos/genética , Proteínas de Ligação a RNA/genética , Sirtuínas/genética , Adulto Jovem
6.
Mol Cell Biol ; 39(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31481451

RESUMO

Stress granules (SGs) are ribonucleoprotein aggregates that form in response to stress conditions. The regulation of SG dynamics is not fully understood. Permanent pathological SG-like structures were reported in neurodegenerative diseases such as amyotrophic lateral sclerosis. The Ras GTPase-activating protein-binding protein G3BP1 is a central regulator of SG dynamics. We found that the lysine 376 residue (K376) of G3BP1, which is in the RRM RNA binding domain, was acetylated. Consequently, G3BP1 RNA binding was impaired by K376 acetylation. In addition, the acetylation-mimicking mutation K376Q impaired the RNA-dependent interaction of G3BP1 with poly(A)-binding protein 1 (PABP1), but its RNA-independent interactions with caprin-1 and USP10 were little affected. The formation of G3BP1 SGs depended on G3BP1 RNA binding; thus, replacement of endogenous G3BP1 with the K376Q mutant or the RNA binding-deficient F380L/F382L mutant interfered with SG formation. Significant G3BP1 K376 acetylation was detected during SG resolution, and K376-acetylated G3BP1 was seen outside SGs. G3BP1 acetylation is regulated by histone deacetylase 6 (HDAC6) and CBP/p300. Our data suggest that the acetylation of G3BP1 facilitates the disassembly of SGs, offering a potential avenue to mitigate hyperactive stress responses under pathological conditions.


Assuntos
Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , Células HEK293 , Desacetilase 6 de Histona/metabolismo , Humanos , Lisina/metabolismo , Camundongos , Camundongos Knockout , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA/genética , RNA/metabolismo , RNA Helicases/antagonistas & inibidores , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/antagonistas & inibidores , Proteínas com Motivo de Reconhecimento de RNA/genética , Ribonucleoproteínas/metabolismo , Estresse Fisiológico/fisiologia , Fatores de Transcrição de p300-CBP/metabolismo
7.
J Neuropathol Exp Neurol ; 77(1): 21-39, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29186589

RESUMO

Misfolded protein in the amygdala is a neuropathologic feature of Alzheimer disease and many other neurodegenerative disorders. We examined extracts from human amygdala (snap-frozen at autopsy) to investigate whether novel and as yet uncharacterized misfolded proteins would be detectable. Polypeptides from the detergent-insoluble, urea-soluble protein fractions of amygdala were interrogated using liquid chromatography-electrospray ionization-tandem mass spectrometry. Among the detergent-insoluble proteins identified in amygdala of demented subjects but not controls were Tau, TDP-43, Aß, α-synuclein, and ApoE. Additional detergent-insoluble proteins from demented subjects in the high-molecular weight portion of SDS gels included NNT, TNIK, PRKDC (DNA-PK, or DNA-PKcs), ferritin light chain (FTL), AIFM1, SYT11, STX1B, EAA1, COL25A1, M4K4, CLH1, SQSTM, SYNJ1, C3, and C4. In follow-up immunohistochemical experiments, NNT, TNIK, PRKDC, AIFM1, and FTL were observed in inclusion body-like structures in cognitively impaired subjects' amygdalae. Double-label immunofluorescence revealed that FTL and phospho-PRKDC immunoreactivity colocalized partially with TDP-43 and/or Tau inclusion bodies. Western blots showed high-molecular weight "smears", particularly for NNT and PRKDC. A preliminary genetic association study indicated that rare NNT, TNIK, and PRKDC gene variants had nominally significant association with Alzheimer-type dementia risk. In summary, novel detergent-insoluble proteins, with evidence of proteinaceous deposits, were found in amygdalae of elderly, cognitively impaired subjects.


Assuntos
Doença de Alzheimer/metabolismo , Tonsila do Cerebelo/metabolismo , Disfunção Cognitiva/metabolismo , Corpos de Inclusão/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Tonsila do Cerebelo/patologia , Apoferritinas/metabolismo , Fator de Indução de Apoptose/metabolismo , Cromatografia Líquida , Disfunção Cognitiva/patologia , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Corpos de Inclusão/patologia , Proteínas Mitocondriais/metabolismo , NADP Trans-Hidrogenase Específica para A ou B/metabolismo , Proteínas Nucleares/metabolismo , Proteômica , Espectrometria de Massas em Tandem
8.
Neurol Genet ; 3(4): e172, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28812062

RESUMO

OBJECTIVE: To describe the clinical features of a novel fused in sarcoma (FUS) mutation in a young adult female amyotrophic lateral sclerosis (ALS) patient with rapid progression of weakness and to experimentally validate the consequences of the P525R mutation in cellular neuronal models. METHODS: We conducted sequencing of genomic DNA from the index patient and her family members. Immunocytochemistry was performed in various cellular models to determine whether the newly identified P525R mutant FUS protein accumulated in cytoplasmic inclusions. Clinical features of the index patient were compared with 19 other patients with ALS carrying the P525L mutation in the same amino acid position. RESULTS: A novel mutation c.1574C>G (p.525P>R) in the FUS gene was identified in the index patient. The clinical symptoms are similar to those in familial ALS patients with the P525L mutation at the same position. The P525R mutant FUS protein showed cytoplasmic localization and formed large stress granule-like cytoplasmic inclusions in multiple cellular models. CONCLUSIONS: The clinical features of the patient and the cytoplasmic inclusions of the P525R mutant FUS protein strengthen the notion that mutations at position 525 of the FUS protein result in a coherent phenotype characterized by juvenile or young adult onset, rapid progression, variable positive family history, and female preponderance.

9.
Biochim Biophys Acta ; 1862(10): 2004-14, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27460707

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease. Mutations in the Fused in Sarcoma/Translocated in Liposarcoma (FUS/TLS) gene cause a subset of familial ALS cases and are also implicated in sporadic ALS. FUS is typically localized to the nucleus. The ALS-related FUS mutations cause cytoplasmic mis-localization and the formation of stress granule-like structures. Abnormal cytoplasmic FUS localization was also found in a subset of frontotemporal dementia (FTLD) cases without FUS mutations. To better understand the function of FUS, we performed wild-type and mutant FUS pull-downs followed by proteomic identification of the interacting proteins. The FUS interacting partners we identified are involved in multiple pathways, including chromosomal organization, transcription, RNA splicing, RNA transport, localized translation, and stress response. FUS interacted with hnRNPA1 and Matrin-3, RNA binding proteins whose mutations were also reported to cause familial ALS, suggesting that hnRNPA1 and Matrin-3 may play common pathogenic roles with FUS. The FUS interactions displayed varied RNA dependence. Numerous FUS interacting partners that we identified are components of exosomes. We found that FUS itself was present in exosomes, suggesting that the secretion of FUS might contribute to the cell-to-cell spreading of FUS pathology. FUS interacting proteins were sequestered into the cytoplasmic mutant FUS inclusions that could lead to their mis-regulation or loss of function, contributing to ALS pathogenesis. Our results provide insights into the physiological functions of FUS as well as important pathways where mutant FUS can interfere with cellular processes and potentially contribute to the pathogenesis of ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Exossomos/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteômica , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Linhagem Celular Tumoral , Exossomos/patologia , Células HEK293 , Humanos , Camundongos
10.
Oncotarget ; 7(18): 25652-67, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27028858

RESUMO

The tumor suppressor Spred2 (Sprouty-related EVH1 domain-2) induces cell death in a variety of cancers. However, the underlying mechanism remains to be elucidated. Here we show that Spred2 induces caspase-independent but autophagy-dependent cell death in human cervical carcinoma HeLa and lung cancer A549 cells. We demonstrate that ectopic Spred2 increased both the conversion of microtubule-associated protein 1 light chain 3 (LC3), GFP-LC3 puncta formation and p62/SQSTM1 degradation in A549 and HeLa cells. Conversely, knockdown of Spred2 in tumor cells inhibited upregulation of autophagosome maturation induced by the autophagy inducer Rapamycin, which could be reversed by the rescue Spred2. These data suggest that Spred2 promotes autophagy in tumor cells. Mechanistically, Spred2 co-localized and interacted with LC3 via the LC3-interacting region (LIR) motifs in its SPR domain. Mutations in the LIR motifs or deletion of the SPR domain impaired Spred2-mediated autophagosome maturation and tumor cell death, indicating that functional LIR is required for Spred2 to trigger tumor cell death. Additionally, Spred2 interacted and co-localized with p62/SQSTM1 through its SPR domain. Furthermore, the co-localization of Spred2, p62 and LAMP2 in HeLa cells indicates that p62 may be involved in Spred2-mediated autophagosome maturation. Inhibition of autophagy using the lysosomal inhibitor chloroquine, reduced Spred2-mediated HeLa cell death. Silencing the expression of autophagy-related genes ATG5, LC3 or p62 in HeLa and A549 cells gave similar results, suggesting that autophagy is required for Spred2-induced tumor cell death. Collectively, these data indicate that Spred2 induces tumor cell death in an autophagy-dependent manner.


Assuntos
Autofagossomos/metabolismo , Autofagia/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Repressoras/metabolismo , Linhagem Celular Tumoral , Humanos
11.
Hum Mol Genet ; 24(18): 5174-83, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26123490

RESUMO

Mutations in Fused in sarcoma (FUS) gene cause a subset of familial amyotrophic lateral sclerosis (ALS), a fatal motor neuron degenerative disease. Wild-type FUS is largely localized in the nucleus, but mutant FUS accumulates in the cytoplasm and forms inclusions. It is unclear whether FUS depletion from the nucleus or FUS inclusions in the cytoplasm triggers motor neuron degeneration. In this study, we revealed that the nuclear and cytoplasmic FUS proteins form distinct local distribution patterns. The nuclear FUS forms oligomers and appears granular under confocal microscope. In contrast, the cytoplasmic FUS forms inclusions with no oligomers detected. These patterns are determined by the subcellular localization of FUS, regardless of wild-type or mutant protein. Moreover, mutant FUS remained or re-directed in the nucleus can oligomerize and behave similarly to the wild-type FUS protein. We further found that nuclear RNAs are critical to its oligomerization. Interestingly, the formation of cytoplasmic FUS inclusions is also dependent on RNA binding. Since the ALS mutations disrupt the nuclear localization sequence, mutant FUS is likely retained in the cytoplasm after translation and interacts with cytoplasmic RNAs. We therefore propose that local RNA molecules interacting with the FUS protein in different subcellular compartments play a fundamental role in determining FUS protein architecture and function.


Assuntos
Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , RNA/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Cromatina/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Espaço Intracelular/metabolismo , Modelos Biológicos , Mutação , Multimerização Proteica , Transporte Proteico , Transporte de RNA , Proteína FUS de Ligação a RNA/genética , Iniciação da Transcrição Genética
12.
Proc Natl Acad Sci U S A ; 111(50): 17809-14, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25453086

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease. Fused in sarcoma (FUS) is a DNA/RNA binding protein and mutations in FUS cause a subset of familial ALS. Most ALS mutations are clustered in the C-terminal nuclear localization sequence of FUS and consequently lead to the accumulation of protein inclusions in the cytoplasm. It remains debatable whether loss of FUS normal function in the nucleus or gain of toxic function in the cytoplasm plays a more critical role in the ALS etiology. Moreover, the physiological function of FUS in the nucleus remains to be fully understood. In this study, we found that a significant portion of nuclear FUS was bound to active chromatin and that the ALS mutations dramatically decreased FUS chromatin binding ability. Functionally, the chromatin binding is required for FUS transcription activation, but not for alternative splicing regulation. The N-terminal QGSY (glutamine-glycine-serine-tyrosine)-rich region (amino acids 1-164) mediates FUS self-assembly in the nucleus of mammalian cells and the self-assembly is essential for its chromatin binding and transcription activation. In addition, RNA binding is also required for FUS self-assembly and chromatin binding. Together, our results suggest a functional assembly of FUS in the nucleus under physiological conditions, which is different from the cytoplasmic inclusions. The ALS mutations can cause loss of function in the nucleus by disrupting this assembly and chromatin binding.


Assuntos
Esclerose Lateral Amiotrófica/genética , Cromatina/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteína FUS de Ligação a RNA/metabolismo , Transcrição Gênica/fisiologia , Western Blotting , Regulação da Expressão Gênica/genética , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Mutação/genética , Proteína FUS de Ligação a RNA/genética , Transcrição Gênica/genética
13.
Antioxid Redox Signal ; 20(10): 1550-66, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23834335

RESUMO

AIMS: FUsed in sarcoma (FUS) is a multifunctional DNA/RNA-binding protein that possesses diverse roles, such as RNA splicing, RNA transport, DNA repair, translation, and transcription. The network of enzymes and processes regulated by FUS is far from being fully described. In this study, we have focused on the mechanisms of FUS-regulated manganese superoxide dismutase (MnSOD) gene transcription. RESULTS: Here we demonstrate that FUS is a component of the transcription complex that regulates the expression of MnSOD. Overexpression of FUS increased MnSOD expression in a dose-dependent manner and knockdown of FUS by siRNA led to the inhibition of MnSOD gene transcription. Reporter analyses, chromatin immunoprecipitation assay, electrophoretic mobility shift assay, affinity chromatography, and surface plasmon resonance analyses revealed the far upstream region of MnSOD promoter as an important target of FUS-mediated MnSOD transcription and confirmed that FUS binds to the MnSOD promoter and interacts with specificity protein 1 (Sp1). Importantly, overexpression of familial amyotropic lateral sclerosis (fALS)-linked R521G mutant FUS resulted in a significantly reduced level of MnSOD expression and activity, which is consistent with the decline in MnSOD activity observed in fibroblasts from fALS patients with the R521G mutation. R521G-mutant FUS abrogates MnSOD promoter-binding activity and interaction with Sp1. INNOVATION AND CONCLUSION: This study identifies FUS as playing a critical role in MnSOD gene transcription and reveals a previously unrecognized relationship between MnSOD and mutant FUS in fALS.


Assuntos
Proteína FUS de Ligação a RNA/fisiologia , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Animais , Indução Enzimática , Células Hep G2 , Humanos , Cinética , Camundongos , Proteínas Nucleares/metabolismo , Nucleofosmina , Mutação Puntual , Regiões Promotoras Genéticas , Ligação Proteica , Proteína FUS de Ligação a RNA/química , Fator de Transcrição Sp1/metabolismo , Superóxido Dismutase/metabolismo , Transcrição Gênica
14.
Mol Neurodegener ; 7: 10, 2012 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-22443542

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is progressive neurodegenerative disease characterized by the loss of motor function. Several ALS genes have been identified as their mutations can lead to familial ALS, including the recently reported RNA-binding protein fused in sarcoma (Fus). However, it is not clear how mutations of Fus lead to motor neuron degeneration in ALS. In this study, we present a Drosophila model to examine the toxicity of Fus, its Drosophila orthologue Cabeza (Caz), and the ALS-related Fus mutants. RESULTS: Our results show that the expression of wild-type Fus/Caz or FusR521G induced progressive toxicity in multiple tissues of the transgenic flies in a dose- and age-dependent manner. The expression of Fus, Caz, or FusR521G in motor neurons significantly impaired the locomotive ability of fly larvae and adults. The presynaptic structures in neuromuscular junctions were disrupted and motor neurons in the ventral nerve cord (VNC) were disorganized and underwent apoptosis. Surprisingly, the interruption of Fus nuclear localization by either deleting its nuclear localization sequence (NLS) or adding a nuclear export signal (NES) blocked Fus toxicity. Moreover, we discovered that the loss of caz in Drosophila led to severe growth defects in the eyes and VNCs, caused locomotive disability and NMJ disruption, but did not induce apoptotic cell death. CONCLUSIONS: These data demonstrate that the overexpression of Fus/Caz causes in vivo toxicity by disrupting neuromuscular junctions (NMJs) and inducing apoptosis in motor neurons. In addition, the nuclear localization of Fus is essential for Fus to induce toxicity. Our findings also suggest that Fus overexpression and gene deletion can cause similar degenerative phenotypes but the underlying mechanisms are likely different.


Assuntos
Esclerose Lateral Amiotrófica/genética , Apoptose/fisiologia , Proteínas de Drosophila/genética , Neurônios Motores/patologia , Junção Neuromuscular/ultraestrutura , Proteína FUS de Ligação a RNA/genética , Proteínas de Ligação a RNA/genética , Fator de Transcrição TFIID/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Humanos , Neurônios Motores/metabolismo , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição TFIID/metabolismo
15.
Prostate ; 72(1): 72-81, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21563192

RESUMO

BACKGROUND: Proteins on cell surface play important roles during cancer progression and metastasis via their ability to mediate cell-to-cell interactions and navigate the communication between cells and the microenvironment. METHODS: In this study a targeted proteomic analysis was conducted to identify the differential expression of cell surface proteins in human benign (BPH-1) versus malignant (LNCaP and PC-3) prostate epithelial cells. We identified EMMPRIN (extracellular matrix metalloproteinase inducer) as a key candidate and shRNA functional approaches were subsequently applied to determine the role of EMMPRIN in prostate cancer cell adhesion, migration, invasion as well as cytoskeleton organization. RESULTS: EMMPRIN was found to be highly expressed on the surface of prostate cancer cells compared to BPH-1 cells, consistent with a correlation between elevated EMMPRIN and metastasis found in other tumors. No significant changes in cell proliferation, cell cycle progression, or apoptosis were detected in EMMPRIN knockdown cells compared to the scramble controls. Furthermore, EMMPRIN silencing markedly decreased the ability of PC-3 cells to form filopodia, a critical feature of invasive behavior, while it increased expression of cell-cell adhesion and gap junction proteins. CONCLUSIONS: Our results suggest that EMMPRIN regulates cell adhesion, invasion, and cytoskeleton reorganization in prostate cancer cells. This study identifies a new function for EMMPRIN as a contributor to prostate cancer cell-cell communication and cytoskeleton changes towards metastatic spread, and suggests its potential value as a marker of prostate cancer progression to metastasis.


Assuntos
Adenocarcinoma/metabolismo , Basigina/metabolismo , Adesão Celular/fisiologia , Citoesqueleto/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Basigina/genética , Adesão Celular/genética , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/patologia , Citoesqueleto/genética , Citoesqueleto/patologia , Progressão da Doença , Humanos , Masculino , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas
16.
Methods Mol Biol ; 732: 69-88, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21431706

RESUMO

MicroRNAs (miRNAs) are a novel class of small noncoding RNAs that regulate gene expression at the posttranscriptional level and play a critical role in many important biological processes and pathological development. In the past few years, miRNAs have been implicated to play an important role in cancer initiation and development. In this chapter, we describe a protocol for the analysis and characterization of miRNAs in prostate cancer cells using a simple but effective array platform. The array is composed of 553 nonredundant miRNAs encompassing the entire set of known miRNAs in humans and mice. As an example, profiling of miRNAs in four prostate cancer cell lines has revealed that a set of miRNAs were differentially expressed between androgen-dependent and androgen-independent metastatic prostate cancer cells. Among them, the differential expression of miR-205 and miR-200c were further validated by Northern blot analysis in these two types of prostate cancer cells. This comprehensive and easy-to-follow protocol will be useful for studying miRNAs in various cancers and can be readily adapted for miRNA analysis in a variety of human diseases.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , MicroRNAs/análise , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Neoplasias da Próstata/genética , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Neoplasias da Próstata/química
17.
Neurobiol Aging ; 32(12): 2323.e27-40, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20674093

RESUMO

Mutations in fused in sarcoma (FUS) have been reported to cause a subset of familial amyotrophic lateral sclerosis (ALS) cases. Wild-type FUS is mostly localized in the nuclei of neurons, but the ALS mutants are partly mislocalized in the cytoplasm and can form inclusions. We demonstrate that the C-terminal 32 amino acid residues of FUS constitute an effective nuclear localization sequence (NLS) as it targeted beta-galactosidase (LacZ, 116 kDa) to the nucleus. Deletion of or the ALS mutations within the NLS caused cytoplasmic mislocalization of FUS. Moreover, we identified the poly-A binding protein (PABP1), a stress granule marker, as an interacting partner of FUS. Large PABP1-positive cytoplasmic foci (i.e. stress granules) colocalized with the mutant FUS inclusions but were absent in wild-type FUS-expressing cells. Processing bodies, which are functionally related to stress granules, were adjacent to but not colocalized with the mutant FUS inclusions. Our results suggest that the ALS mutations in FUS NLS can impair FUS nuclear localization, induce cytoplasmic inclusions and stress granules, and potentially perturb RNA metabolism.


Assuntos
Esclerose Lateral Amiotrófica/genética , Núcleo Celular/genética , Mutação/genética , Sinais de Localização Nuclear/genética , Estresse Oxidativo/genética , Proteína FUS de Ligação a RNA/genética , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/patologia , Animais , Núcleo Celular/patologia , Células Cultivadas , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/patologia , Células HEK293 , Humanos , Corpos de Inclusão/genética , Camundongos , Dados de Sequência Molecular , Neurônios Motores/fisiologia , Proteína FUS de Ligação a RNA/metabolismo
18.
Biochim Biophys Acta ; 1802(9): 707-16, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20510358

RESUMO

Transport of material and signals between extensive neuronal processes and the cell body is essential to neuronal physiology and survival. Slowing of axonal transport has been shown to occur before the onset of symptoms in amyotrophic lateral sclerosis (ALS). We have previously shown that several familial ALS-linked copper-zinc superoxide dismutase (SOD1) mutants (A4V, G85R, and G93A) interacted and colocalized with the retrograde dynein-dynactin motor complex in cultured cells and affected tissues of ALS mice. We also found that the interaction between mutant SOD1 and the dynein motor played a critical role in the formation of large inclusions containing mutant SOD1. In this study, we showed that, in contrast to the dynein situation, mutant SOD1 did not interact with anterograde transport motors of the kinesin-1 family (KIF5A, B and C). Using dynein and kinesin accumulation at the sciatic nerve ligation sites as a surrogate measurement of axonal transport, we also showed that dynein mediated retrograde transport was slower in G93A than in WT mice at an early presymptomatic stage. While no decrease in KIF5A-mediated anterograde transport was detected, the slowing of anterograde transport of dynein heavy chain as a cargo was observed in the presymptomatic G93A mice. The results from this study along with other recently published work support that mutant SOD1 might only interact with and interfere with some kinesin members, which, in turn, could result in the impairment of a selective subset of cargos. Although it remains to be further investigated how mutant SOD1 affects different axonal transport motor proteins and various cargos, it is evident that mutant SOD1 can induce defects in axonal transport, which, subsequently, contribute to the propagation of toxic effects and ultimately motor neuron death in ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Transporte Axonal/genética , Dineínas/fisiologia , Cinesinas/fisiologia , Superóxido Dismutase/fisiologia , Animais , Transporte Axonal/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Dineínas/metabolismo , Humanos , Cinesinas/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiologia , Ligação Proteica/genética , Ligação Proteica/fisiologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Superóxido Dismutase/genética
19.
J Biol Chem ; 283(33): 22795-805, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18515363

RESUMO

An important consequence of protein misfolding related to neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), is the formation of proteinaceous inclusions or aggregates within the central nervous system. We have previously shown that several familial ALS-linked copper-zinc superoxide dismutase (SOD1) mutants (A4V, G85R, and G93A) interact and co-localize with the dynein-dynactin complex in cultured cells and affected tissues of ALS mice. In this study, we report that the interaction between mutant SOD1 and the dynein motor plays a critical role in the formation of large inclusions containing mutant SOD1. Disruption of the motor by overexpression of the p50 subunit of dynactin in neuronal and non-neuronal cell cultures abolished the association between aggregation-prone SOD1 mutants and the dynein-dynactin complex. The p50 overexpression also prevented mutant SOD1 inclusion formation and improved the survival of cells expressing A4V SOD1. Furthermore, we observed that two ALS-linked SOD1 mutants, H46R and H48Q, which showed a lower propensity to interact with the dynein motor, also produced less aggregation and fewer large inclusions. Overall, these data suggest that formation of large inclusions depends upon association of the abnormal SOD1s with the dynein motor. Whether the misfolded SOD1s directly perturb axonal transport or impair other functional properties of the dynein motor, this interaction could propagate a toxic effect that ultimately causes motor neuron death in ALS.


Assuntos
Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Doença dos Neurônios Motores/enzimologia , Doença dos Neurônios Motores/genética , Mutação , Superóxido Dismutase/genética , Substituição de Aminoácidos , Complexo Dinactina , Genes Reporter , Humanos , Cinética , Plasmídeos , Subunidades Proteicas/metabolismo , Superóxido Dismutase/metabolismo , Transfecção
20.
J Neurochem ; 106(2): 495-505, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18384644

RESUMO

Transport of material between extensive neuronal processes and the cell body is crucial for neuronal function and survival. Growing evidence shows that deficits in axonal transport contribute to the pathogenesis of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here we review recent data indicating that defects in dynein-mediated retrograde axonal transport are involved in ALS etiology. We discuss how mutant copper-zinc superoxide dismutase (SOD1) and an aberrant interaction between mutant SOD1 and dynein could perturb retrograde transport of neurotrophic factors and mitochondria. A possible contribution of axonal transport to the aggregation and degradation processes of mutant SOD1 is also reviewed. We further consider how the interference with axonal transport and protein turnover by mutant SOD1 could influence the function and viability of motor neurons in ALS.


Assuntos
Transporte Axonal/fisiologia , Doença dos Neurônios Motores/patologia , Doença dos Neurônios Motores/fisiopatologia , Neurônios Motores/fisiologia , Animais , Dineínas/metabolismo , Humanos , Doença dos Neurônios Motores/genética , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA