Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JACC CardioOncol ; 5(6): 715-731, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38205010

RESUMO

Despite improvements in cancer survival, cancer therapy-related cardiovascular toxicity has risen to become a prominent clinical challenge. This has led to the growth of the burgeoning field of cardio-oncology, which aims to advance the cardiovascular health of cancer patients and survivors, through actionable and translatable science. In these Global Cardio-Oncology Symposium 2023 scientific symposium proceedings, we present a focused review on the mechanisms that contribute to common cardiovascular toxicities discussed at this meeting, the ongoing international collaborative efforts to improve patient outcomes, and the bidirectional challenges of translating basic research to clinical care. We acknowledge that there are many additional therapies that are of significance but were not topics of discussion at this symposium. We hope that through this symposium-based review we can highlight the knowledge gaps and clinical priorities to inform the design of future studies that aim to prevent and mitigate cardiovascular disease in cancer patients and survivors.

2.
Cardiovasc Res ; 118(2): 531-541, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33605403

RESUMO

AIMS: The aim of this study was to study changes in coronary microcirculation status during and after several cycles of anthracycline treatment. METHODS AND RESULTS: Large-white male pigs (n=40) were included in different experimental protocols (ExPr.) according to anthracycline cumulative exposure [0.45 mg/kg intracoronary (IC) doxorubicin per injection] and follow-up: control (no doxorubicin); single injection and sacrifice either at 48 h (ExPr. 1) or 2 weeks (ExPr. 2); 3 injections 2 weeks apart (low cumulative dose) and sacrifice either 2 weeks (ExPr. 3) or 12 weeks (ExPr. 4) after third injection; five injections 2 weeks apart (high cumulative dose) and sacrifice 8 weeks after fifth injection (ExPr. 5). All groups were assessed by serial cardiac magnetic resonance (CMR) to quantify perfusion and invasive measurement of coronary flow reserve (CFR). At the end of each protocol, animals were sacrificed for ex vivo analyses. Vascular function was further evaluated by myography in explanted coronary arteries of pigs undergoing ExPr. 3 and controls. A single doxorubicin injection had no impact on microcirculation status, excluding a direct chemical toxicity. A series of five fortnightly doxorubicin injections (high cumulative dose) triggered a progressive decline in microcirculation status, evidenced by reduced CMR-based myocardial perfusion and CFR-measured impaired functional microcirculation. In the high cumulative dose regime (ExPr. 5), microcirculation changes appeared long before any contractile defect became apparent. Low cumulative doxorubicin dose (three bi-weekly injections) was not associated with any contractile defect across long-term follow-up, but provoked persistent microcirculation damage, evident soon after third dose injection. Histological and myograph evaluations confirmed structural damage to arteries of all calibres even in animals undergoing low cumulative dose regimes. Conversely, arteriole damage and capillary bed alteration occurred only after high cumulative dose regime. CONCLUSION: Serial in vivo evaluations of microcirculation status using state-of-the-art CMR and invasive CFR show that anthracyclines treatment is associated with progressive and irreversible damage to the microcirculation. This long-persisting damage is present even in low cumulative dose regimes, which are not associated with cardiac contractile deficits. Microcirculation damage might explain some of the increased incidence of cardiovascular events in cancer survivors who received anthracyclines without showing cardiac contractile defects.


Assuntos
Circulação Coronária , Vasos Coronários/fisiopatologia , Cardiopatias/fisiopatologia , Microcirculação , Microvasos/fisiopatologia , Animais , Antibióticos Antineoplásicos , Cardiotoxicidade , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Modelos Animais de Doenças , Doxorrubicina , Cardiopatias/induzido quimicamente , Cardiopatias/diagnóstico por imagem , Cardiopatias/patologia , Imageamento por Ressonância Magnética , Masculino , Microvasos/diagnóstico por imagem , Microvasos/patologia , Imagem de Perfusão do Miocárdio , Sus scrofa , Fatores de Tempo
3.
Cardiovasc Res ; 117(4): 1132-1143, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-32597960

RESUMO

AIMS: Anthracycline-induced cardiotoxicity (AIC) is a serious adverse effect among cancer patients. A central mechanism of AIC is irreversible mitochondrial damage. Despite major efforts, there are currently no effective therapies able to prevent AIC. METHODS AND RESULTS: Forty Large-White pigs were included. In Study 1, 20 pigs were randomized 1:1 to remote ischaemic preconditioning (RIPC, 3 cycles of 5 min leg ischaemia followed by 5 min reperfusion) or no pretreatment. RIPC was performed immediately before each intracoronary doxorubicin injections (0.45 mg/kg) given at Weeks 0, 2, 4, 6, and 8. A group of 10 pigs with no exposure to doxorubicin served as healthy controls. Pigs underwent serial cardiac magnetic resonance (CMR) exams at baseline and at Weeks 6, 8, 12, and 16, being sacrifice after that. In Study 2, 10 new pigs received 3 doxorubicin injections (with/out preceding RIPC) and were sacrificed at week 6. In Study 1, left ventricular ejection fraction (LVEF) depression was blunted animals receiving RIPC before doxorubicin (RIPC-Doxo), which had a significantly higher LVEF at Week 16 than doxorubicin treated pigs that received no pretreatment (Untreated-Doxo) (41.5 ± 9.1% vs. 32.5 ± 8.7%, P = 0.04). It was mainly due to conserved regional contractile function. In Study 2, transmission electron microscopy (TEM) at Week 6 showed fragmented mitochondria with severe morphological abnormalities in Untreated-Doxo pigs, together with upregulation of fission and autophagy proteins. At the end of the 16-week Study 1 protocol, TEM revealed overt mitochondrial fragmentation with structural fragmentation in Untreated-Doxo pigs, whereas interstitial fibrosis was less severe in RIPC+Doxo pigs. CONCLUSION: In a translatable large-animal model of AIC, RIPC applied immediately before each doxorubicin injection resulted in preserved cardiac contractility with significantly higher long-term LVEF and less cardiac fibrosis. RIPC prevented mitochondrial fragmentation and dysregulated autophagy from AIC early stages. RIPC is a promising intervention for testing in clinical trials in AIC.


Assuntos
Cardiopatias/prevenção & controle , Membro Posterior/irrigação sanguínea , Precondicionamento Isquêmico , Mitocôndrias Cardíacas/ultraestrutura , Miocárdio/ultraestrutura , Volume Sistólico , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Antibióticos Antineoplásicos , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Cardiotoxicidade , Modelos Animais de Doenças , Doxorrubicina , Fibrose , Cardiopatias/induzido quimicamente , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Imagem Cinética por Ressonância Magnética , Masculino , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Miocárdio/metabolismo , Fluxo Sanguíneo Regional , Sus scrofa , Fatores de Tempo
5.
Sci Rep ; 9(1): 4647, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874584

RESUMO

Adult cardiac progenitor/stem cells (CPC/CSC) are multipotent resident populations involved in cardiac homeostasis and heart repair. Assisted by complementary RNAseq analysis, we defined the fraction of the CPC proteome associable with specific functions by comparison with human bone marrow mesenchymal stem cells (MSC), the reference population for cell therapy, and human dermal fibroblasts (HDF), as a distant reference. Label-free proteomic analysis identified 526 proteins expressed differentially in CPC. iTRAQ analysis confirmed differential expression of a substantial proportion of those proteins in CPC relative to MSC, and systems biology analysis defined a clear overrepresentation of several categories related to enhanced angiogenic potential. The CPC plasma membrane compartment comprised 1,595 proteins, including a minimal signature of 167 proteins preferentially or exclusively expressed by CPC. CDH5 (VE-cadherin),  OX2G (OX-2 membrane glycoprotein; CD200), GPR4 (G protein-coupled receptor 4), CACNG7 (calcium voltage-gated channel auxiliary subunit gamma 7) and F11R (F11 receptor; junctional adhesion molecule A; JAM-A; CD321) were selected for validation. Their differential expression was confirmed both in expanded CPC batches and in early stages of isolation, particularly when compared against cardiac fibroblasts. Among them, GPR4 demonstrated the highest discrimination capacity between all cell lineages analyzed.


Assuntos
Diferenciação Celular/fisiologia , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/metabolismo , Adulto , Antígenos CD , Biomarcadores , Caderinas , Canais de Cálcio , Moléculas de Adesão Celular , Perfilação da Expressão Gênica/métodos , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/metabolismo , Proteoma/genética , Proteômica/métodos , Receptores de Superfície Celular , Receptores Acoplados a Proteínas G , Transcriptoma/genética
6.
J Am Coll Cardiol ; 73(7): 779-791, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30784671

RESUMO

BACKGROUND: Anthracycline-induced cardiotoxicity is a major clinical problem, and early cardiotoxicity markers are needed. OBJECTIVES: The purpose of this study was to identify early doxorubicin-induced cardiotoxicity by serial multiparametric cardiac magnetic resonance (CMR) and its pathological correlates in a large animal model. METHODS: Twenty pigs were included. Of these, 5 received 5 biweekly intracoronary doxorubicin doses (0.45 mg/kg/injection) and were followed until sacrifice at 16 weeks. Another 5 pigs received 3 biweekly doxorubicin doses and were followed to 16 weeks. A third group was sacrificed after the third dose. All groups underwent weekly CMR examinations including anatomical and T2 and T1 mapping (including extracellular volume [ECV] quantification). A control group was sacrificed after the initial CMR. RESULTS: The earliest doxorubicin-cardiotoxicity CMR parameter was T2 relaxation-time prolongation at week 6 (2 weeks after the third dose). T1 mapping, ECV, and left ventricular (LV) motion were unaffected. At this early time point, isolated T2 prolongation correlated with intracardiomyocyte edema secondary to vacuolization without extracellular space expansion. Subsequent development of T1 mapping and ECV abnormalities coincided with LV motion defects: LV ejection fraction declined from week 10 (2 weeks after the fifth and final doxorubicin dose). Stopping doxorubicin therapy upon detection of T2 prolongation halted progression to LV motion deterioration and resolved intracardiomyocyte vacuolization, demonstrating that early T2 prolongation occurs at a reversible disease stage. CONCLUSIONS: T2 mapping during treatment identifies intracardiomyocyte edema generation as the earliest marker of anthracycline-induced cardiotoxicity, in the absence of T1 mapping, ECV, or LV motion defects. The occurrence of these changes at a reversible disease stage shows the clinical potential of this CMR marker for tailored anthracycline therapy.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cardiotoxicidade/diagnóstico por imagem , Doxorrubicina/efeitos adversos , Imageamento por Ressonância Magnética , Animais , Antibióticos Antineoplásicos/administração & dosagem , Cardiotoxicidade/etiologia , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Esquema de Medicação , Masculino , Suínos , Fatores de Tempo
7.
J Am Heart Assoc ; 7(2)2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358198

RESUMO

BACKGROUND: Transplantation of adventitial pericytes (APCs) promotes cardiac repair in murine models of myocardial infarction. The aim of present study was to confirm the benefit of APC therapy in a large animal model. METHODS AND RESULTS: We performed a blind, randomized, placebo-controlled APC therapy trial in a swine model of reperfused myocardial infarction. A first study used human APCs (hAPCs) from patients undergoing coronary artery bypass graft surgery. A second study used allogeneic swine APCs (sAPCs). Primary end points were (1) ejection fraction as assessed by cardiac magnetic resonance imaging and (2) myocardial vascularization and fibrosis as determined by immunohistochemistry. Transplantation of hAPCs reduced fibrosis but failed to improve the other efficacy end points. Incompatibility of the xenogeneic model was suggested by the occurrence of a cytotoxic response following in vitro challenge of hAPCs with swine spleen lymphocytes and the failure to retrieve hAPCs in transplanted hearts. We next considered sAPCs as an alternative. Flow cytometry, immunocytochemistry, and functional/cytotoxic assays indicate that sAPCs are a surrogate of hAPCs. Transplantation of allogeneic sAPCs benefited capillary density and fibrosis but did not improve cardiac magnetic resonance imaging indices of contractility. Transplanted cells were detected in the border zone. CONCLUSIONS: Immunologic barriers limit the applicability of a xenogeneic swine model to assess hAPC efficacy. On the other hand, we newly show that transplantation of allogeneic sAPCs is feasible, safe, and immunologically acceptable. The approach induces proangiogenic and antifibrotic benefits, though these effects were not enough to result in functional improvements.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Infarto do Miocárdio/cirurgia , Traumatismo por Reperfusão Miocárdica/cirurgia , Miocárdio/patologia , Neovascularização Fisiológica , Pericitos/transplante , Função Ventricular Esquerda , Remodelação Ventricular , Idoso , Idoso de 80 Anos ou mais , Células Alógenas , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibrose , Xenoenxertos , Humanos , Masculino , Pessoa de Meia-Idade , Contração Miocárdica , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Recuperação de Função Fisiológica , Volume Sistólico , Sus scrofa , Transplante Homólogo
8.
J Am Heart Assoc ; 6(5)2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28468789

RESUMO

BACKGROUND: Autologous adipose tissue-derived mesenchymal stem cells (ATMSCs) therapy is a promising strategy to improve post-myocardial infarction outcomes. In a porcine model of acute myocardial infarction, we studied the long-term effects and the mechanisms involved in allogeneic ATMSCs administration on myocardial performance. METHODS AND RESULTS: Thirty-eight pigs underwent 50 minutes of coronary occlusion; the study was completed in 33 pigs. After reperfusion, allogeneic ATMSCs or culture medium (vehicle) were intracoronarily administered. Follow-ups were performed at short (2 days after acute myocardial infarction vehicle-treated, n=10; ATMSCs-treated, n=9) or long term (60 days after acute myocardial infarction vehicle-treated, n=7; ATMSCs-treated, n=7). At short term, infarcted myocardium analysis showed reduced apoptosis in the ATMSCs-treated animals (48.6±6% versus 55.9±5.7% in vehicle; P=0.017); enhancement of the reparative process with up-regulated vascular endothelial growth factor, granulocyte macrophage colony-stimulating factor, and stromal-derived factor-1α gene expression; and increased M2 macrophages (67.2±10% versus 54.7±10.2% in vehicle; P=0.016). In long-term groups, increase in myocardial perfusion at the anterior infarct border was observed both on day-7 and day-60 cardiac magnetic resonance studies in ATMSCs-treated animals, compared to vehicle (87.9±28.7 versus 57.4±17.7 mL/min per gram at 7 days; P=0.034 and 99±22.6 versus 43.3±14.7 22.6 mL/min per gram at 60 days; P=0.0001, respectively). At day 60, higher vascular density was detected at the border zone in the ATMSCs-treated animals (118±18 versus 92.4±24.3 vessels/mm2 in vehicle; P=0.045). Cardiac magnetic resonance-measured left ventricular ejection fraction of left ventricular volumes was not different between groups at any time point. CONCLUSIONS: In this porcine acute myocardial infarction model, allogeneic ATMSCs-based therapy was associated with increased cardioprotective and reparative mechanisms and with better cardiac magnetic resonance-measured perfusion. No effect on left ventricular volumes or ejection fraction was observed.


Assuntos
Tecido Adiposo/citologia , Circulação Coronária , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais , Infarto do Miocárdio/cirurgia , Disfunção Ventricular Esquerda/cirurgia , Função Ventricular Esquerda , Proteínas Angiogênicas/metabolismo , Animais , Células Cultivadas , Angiografia por Tomografia Computadorizada , Angiografia Coronária/métodos , Citocinas/metabolismo , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento por Ressonância Magnética , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Tomografia Computadorizada Multidetectores , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Neovascularização Fisiológica , Imagem de Perfusão/métodos , Recuperação de Função Fisiológica , Regeneração , Sus scrofa , Fatores de Tempo , Transfecção , Transplante Homólogo , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
9.
Basic Res Cardiol ; 112(2): 17, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28188434

RESUMO

Reperfusion, despite being required for myocardial salvage, is associated with additional injury. We hypothesize that infarct size (IS) will be reduced by a period of bloodless reperfusion with hemoglobin-based oxygen carriers (HBOC) before blood-flow restoration. In the pig model, we first characterized the impact of intracoronary perfusion with a fixed volume (600 ml) of a pre-oxygenated acellular HBOC, HBOC-201, on the healthy myocardium. HBOC-201 was administered through the lumen of the angioplasty balloon (i.e., distal to the occlusion site) immediately after onset of coronary occlusion at 1, 0.7, 0.4, or 0.2 ml/kg/min for 12, 17, 30, and 60 min, respectively, followed by blood-flow restoration. Outcome measures were systemic hemodynamics and LV performance assessed by the state-of-the-art cardiac magnetic resonance (CMR) imaging. The best performing HBOC-201 perfusion strategies were then tested for their impact on LV performance during myocardial infarction, in pigs subjected to 45 min mid-left anterior descending (LAD) coronary occlusion. At the end of the ischemia duration, pigs were randomized to regular reperfusion (blood-only reperfusion) vs. bloodless reperfusion (perfusion with pre-oxygenated HBOC-201 distal to the occlusion site), followed by blood-flow restoration. Hemodynamics and CMR-measured LV performance were assessed at 7- and 45-day follow-up. In modifications of the HBOC-201 procedure, glucose and insulin were included to support cardiac metabolism. A total of 66 pigs were included in this study. Twenty healthy pigs (5 per infusion protocol) were used in the study of healthy myocardium. Intracoronary administration of HBOC-201 (600 ml) at varying rates, including a flow of 0.4 ml/kg/min (corresponding to a maximum perfusion time of 30 min), did not damage the healthy myocardium. Slower perfusion (longer infusion time) was associated with permanent LV dysfunction and myocardial necrosis. A total of 46 pigs underwent MI induction. Compared with regular reperfusion, bloodless reperfusion with pre-oxygenated HBOC-201 alone increased IS. This effect was reversed by enrichment of pre-oxygenated HBOC-201 solution with glucose and insulin, resulting in no increase in IS or worsening of long-term ventricular function despite further delaying restoration of blood flow in the LAD. Bloodless reperfusion with a pre-oxygenated HBOC-201 solution supplemented with glucose and insulin is feasible and safe, but did not reduce infarct size. This strategy could be, however, used to deliver agents to the myocardium to treat or prevent ischemia/reperfusion injury before blood-flow restoration.


Assuntos
Hemodinâmica/efeitos dos fármacos , Hemoglobinas/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Reperfusão Miocárdica/métodos , Animais , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Infarto do Miocárdio/complicações , Distribuição Aleatória , Suínos
10.
Eur J Cardiothorac Surg ; 50(4): 685-692, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27222592

RESUMO

OBJECTIVES: The impact of systolic flow displacement on the development and progression of ascending aorta dilatation in aortic valve disease is a matter of controversy. Our objective was to study the association between rheological stimuli and development of aortic dilatation in a large animal model of supravalvular aortic stenosis and eccentric flow. METHODS: Twenty-four pigs weighing 10-14 kg were randomly allocated (ratio 2:1) to either restrictive ascending aortic banding or sham operation. Aortic diameter and systolic flow displacement were assessed by three-dimensional phase-contrast magnetic resonance imaging at 6 and 18 weeks after surgery. Twenty pigs (n = 14, banded vs n = 6, sham) completed full imaging protocol and were included in the analysis. After the last follow-up, a subset of 14 animals was sacrificed for histological analysis. RESULTS: All banded animals developed significant progressive aortic dilatation both at 6 and 18 weeks, compared with sham-operated pigs: 34.3 ± 4.8 vs 21.4 ± 2.7 mm at 6 weeks (P < 0.001); and 50.0 ± 8.4 vs 38.0 ± 8.3 mm at 18 weeks (P = 0.002). The peak gradient at 6 weeks showed a trend to positively correlate with aortic diameter at 18 weeks (R = 0.50, P = 0.06), whereas the systolic flow displacement at 6 weeks correlated better with aortic diameter at 18 weeks (R = 0.59, P = 0.02). The aortic wall thickness was significantly decreased in the anterior aortic section in banded, compared with sham-operated, pigs (1.5 ± 0.4 vs 2.0 ± 0.1 mm, respectively; P = 0.03). In addition, banded pigs showed a higher degree of cystic medial necrosis and elastin fibre fragmentation, compared with sham-operated animals. CONCLUSIONS: In this preclinical model of supravalvular aortic stenosis and eccentric flow, we found that systolic flow displacement at earlier stages is positively correlated with the degree of aortic dilatation during follow-up as assessed by three-dimensional phase-contrast magnetic resonance imaging. If our findings are confirmed in further studies, this imaging parameter might be useful to identify those subjects with aortic valve disease who are at risk of developing aortic dilatation at a later stage.


Assuntos
Aneurisma Aórtico/diagnóstico por imagem , Animais , Aneurisma Aórtico/fisiopatologia , Aneurisma Aórtico/cirurgia , Estenose Aórtica Supravalvular/diagnóstico por imagem , Estenose Aórtica Supravalvular/fisiopatologia , Estenose Aórtica Supravalvular/cirurgia , Modelos Animais de Doenças , Coração/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Reologia , Suínos , Função Ventricular Esquerda/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA