Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 24(6): 137, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344629

RESUMO

Galeterone, a novel prostate cancer candidate treatment, was discontinued after a Phase III clinical trial due to lack of efficacy. Galeterone is weakly basic and exhibits low solubility in biorelevant media (i.e., ~ 2 µg/mL in fasted simulated intestinal fluid). It was formulated as a 50-50 (w/w) galeterone-hypromellose acetate succinate spray-dried dispersion to increase its bioavailability. Despite this increase, the bioavailability of this formulation may have been insufficient and contributed to its clinical failure. We hypothesized that reformulating galeterone as an amorphous solid dispersion by KinetiSol® compounding could increase its bioavailability. In this study, we examined the effects of composition and manufacturing technology (Kinetisol and spray drying) on the performance of galeterone amorphous solid dispersions. KinetiSol compounding was utilized to create galeterone amorphous solid dispersions containing the complexing agent hydroxypropyl-ß-cyclodextrin or hypromellose acetate succinate with lower drug loads that both achieved a ~ 6 × increase in dissolution performance versus the 50-50 spray-dried dispersion. When compared to a spray-dried dispersion with an equivalent drug load, the KinetiSol amorphous solid dispersions formulations exhibited ~ 2 × exposure in an in vivo rat study. Acid-base surface energy analysis showed that the equivalent composition of the KinetiSol amorphous solid dispersion formulation better protected the weakly basic galeterone from premature dissolution in acidic media and thereby reduced precipitation, inhibited recrystallization, and extended the extent of supersaturation during transit into neutral intestinal media.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Masculino , Ratos , Animais , Humanos , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Disponibilidade Biológica , Secagem por Atomização , Solubilidade , Neoplasias da Próstata/tratamento farmacológico
2.
Eur J Pharm Biopharm ; 165: 52-65, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33979662

RESUMO

Abiraterone is a poorly water-soluble drug used in the treatment of prostate cancer. In our previous study, we reported that KinetiSol® processed solid dispersions (KSDs) based on hydroxypropyl ß-cyclodextrin (HPBCD) showed improved dissolution and pharmacokinetics of abiraterone. However, the nature of abiraterone-HPBCD interaction within the KSDs or the effect of drug loading on the physicochemical properties and in vivo performance of HPBCD-based KSDs remain largely unknown. We hypothesize that KinetiSol technology can prepare abiraterone-HPBCD complexes within KSDs and that increasing the drug loading beyond an optimal point reduces the in vitro and in vivo performance of these KSDs. To confirm our hypothesis, we developed KSDs with 10-50% w/w drug loading and analyzed them using X-ray diffractometry and modulated differential scanning calorimetry. We found that KSDs containing 10-30% drug were amorphous. Interestingly, two-dimensional solid-state nuclear magnetic resonance and Raman spectroscopy indicated that the abiraterone-HPBCD complexes were formed. At elevated temperatures, the 10% and 20% drug-loaded KSDs were physically stable, while the 30% drug-loaded KSD showed recrystallization of abiraterone. In vitro dissolution and in vivo pharmacokinetic performances improved as the drug loading decreased; we attribute this to increased noncovalent interactions between abiraterone and HPBCD at lower drug loadings. Overall, the 10% drug loaded KSD showed a dissolution enhancement of 15.7-fold compared to crystalline abiraterone, and bioavailability enhancement of 3.9-fold compared to the commercial abiraterone acetate tablet Zytiga®. This study is first to confirm that KinetiSol, a high-energy, solvent-free technology, is capable of forming abiraterone-HPBCD complexes. Furthermore, in terms of in vitro and in vivo performance, a 10% drug load is optimal.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Androstenos/farmacocinética , Composição de Medicamentos/métodos , Excipientes/química , Androstenos/química , Disponibilidade Biológica , Química Farmacêutica , Liberação Controlada de Fármacos
3.
Biochim Biophys Acta Rev Cancer ; 1873(1): 188319, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678141

RESUMO

The treatment of cancer is still a major challenge. But tremendous progress in anticancer drug discovery and development has occurred in the last few decades. However, this progress has resulted in few effective oncology products due to challenges associated with anticancer drug delivery. Oral administration is the most preferred route for anticancer drug delivery, but the majority of anticancer drugs currently in product pipelines and the majority of those that have been commercially approved have inherently poor water solubility, and this cannot be mitigated without compromising their potency and stability. The poor water solubility of anticancer drugs, in conjunction with other factors, leads to suboptimal pharmacokinetic performance. Thus, these drugs have limited efficacy and safety when administered orally. The amorphous solid dispersion (ASD) is a promising formulation technology that primarily enhances the aqueous solubility of poorly water-soluble drugs. In this review, we discuss the challenges associated with the oral administration of anticancer drugs and the use of ASD technology in alleviating these challenges. We emphasize the ability of ASDs to improve not only the pharmacokinetics of poorly water-soluble anticancer drugs, but also their efficacy and safety. The goal of this paper is to rationalize the application of ASD technology in the formulation of anticancer drugs, thereby creating superior oncology products that lead to improved therapeutic outcomes.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Monitoramento de Medicamentos/métodos , Tecnologia Farmacêutica/métodos , Administração Oral , Antineoplásicos/química , Antineoplásicos/farmacocinética , Química Farmacêutica , Sistemas de Liberação de Medicamentos/tendências , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências , Monitoramento de Medicamentos/tendências , Humanos , Solubilidade , Tecnologia Farmacêutica/tendências , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA