Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Rep (Hoboken) ; 7(5): e2078, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711272

RESUMO

BACKGROUND: Statins, frequently prescribed medications, work by inhibiting the rate-limiting enzyme HMG-CoA reductase (HMGCR) in the mevalonate pathway to reduce cholesterol levels. Due to their multifaceted benefits, statins are being adapted for use as cost-efficient, safe and effective anti-cancer treatments. Several studies have shown that specific types of cancer are responsive to statin medications since they rely on the mevalonate pathway for their growth and survival. RECENT FINDINGS: Statin are a class of drugs known for their potent inhibition of cholesterol production and are typically prescribed to treat high cholesterol levels. Nevertheless, there is growing interest in repurposing statins for the treatment of malignant neoplastic diseases, often in conjunction with chemotherapy and radiotherapy. The mechanism behind statin treatment includes targeting apoptosis through the BCL2 signaling pathway, regulating the cell cycle via the p53-YAP axis, and imparting epigenetic modulations by altering methylation patterns on CpG islands and histone acetylation by downregulating DNMTs and HDACs respectively. Notably, some studies have suggested a potential chemo-preventive effect, as decreased occurrence of tumor relapse and enhanced survival rate were reported in patients undergoing long-term statin therapy. However, the definitive endorsement of statin usage in cancer therapy hinges on population based clinical studies with larger patient cohorts and extended follow-up periods. CONCLUSIONS: The potential of anti-cancer properties of statins seems to reach beyond their influence on cholesterol production. Further investigations are necessary to uncover their effects on cancer promoting signaling pathways. Given their distinct attributes, statins might emerge as promising contenders in the fight against tumorigenesis, as they appear to enhance the efficacy and address the limitations of conventional cancer treatments.


Assuntos
Antineoplásicos , Reposicionamento de Medicamentos , Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais
2.
Oxf Open Neurosci ; 3: kvae001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595939

RESUMO

PRDM16 is a dynamic transcriptional regulator of various stem cell niches, including adipocytic, hematopoietic, cardiac progenitors, and neural stem cells. PRDM16 has been suggested to contribute to 1p36 deletion syndrome, one of the most prevalent subtelomeric microdeletion syndromes. We report a patient with a de novo nonsense mutation in the PRDM16 coding sequence, accompanied by lissencephaly and microcephaly features. Human stem cells were genetically modified to mimic this mutation, generating cortical organoids that exhibited altered cell cycle dynamics. RNA sequencing of cortical organoids at day 32 unveiled changes in cell adhesion and WNT-signaling pathways. ChIP-seq of PRDM16 identified binding sites in postmortem human fetal cortex, indicating the conservation of PRDM16 binding to developmental genes in mice and humans, potentially at enhancer sites. A shared motif between PRDM16 and LHX2 was identified and further examined through comparison with LHX2 ChIP-seq data from mice. These results suggested a collaborative partnership between PRDM16 and LHX2 in regulating a common set of genes and pathways in cortical radial glia cells, possibly via their synergistic involvement in cortical development.

3.
Mil Med Res ; 11(1): 3, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38173045

RESUMO

BACKGROUND: Targeted T-cell therapy has emerged as a promising strategy for the treatment of hematological malignancies. However, its application to solid tumors presents significant challenges due to the limited accessibility and heterogeneity. Localized delivery of tumor-specific T-cells using biomaterials has shown promise, however, procedures required for genetic modification and generation of a sufficient number of tumor-specific T-cells ex vivo remain major obstacles due to cost and time constraints. METHODS: Polyethylene glycol (PEG)-based three-dimensional (3D) scaffolds were developed and conjugated with positively charged poly-L-lysine (PLL) using carbamide chemistry for efficient loading of lentiviruses (LVs) carrying tumor antigen-specific T-cell receptors (TCRs). The physical and biological properties of the scaffold were extensively characterized. Further, the scaffold loaded with OVA-TCR LVs was implanted in B16F10 cells expressing ovalbumin (B16-OVA) tumor model to evaluate the anti-tumor response and the presence of transduced T-cells. RESULTS: Our findings demonstrate that the scaffolds do not induce any systemic inflammation upon subcutaneous implantation and effectively recruit T-cells to the site. In B16-OVA melanoma tumor-bearing mice, the scaffolds efficiently transduce host T-cells with OVA-specific TCRs. These genetically modified T-cells exhibit homing capability towards the tumor and secondary lymphoid organs, resulting in a significant reduction of tumor size and systemic increase in anti-tumor cytokines. Immune cell profiling revealed a significantly high percentage of transduced T-cells and a notable reduction in suppressor immune cells within the tumors of mice implanted with these scaffolds. CONCLUSION: Our scaffold-based T-cell therapy presents an innovative in situ localized approach for programming T-cells to target solid tumors. This approach offers a viable alternative to in vitro manipulation of T-cells, circumventing the need for large-scale in vitro generation and culture of tumor-specific T-cells. It offers an off-the-shelf alternative that facilitates the use of host cells instead of allogeneic cells, thereby, overcoming a major hurdle.


Assuntos
Melanoma Experimental , Linfócitos T , Camundongos , Animais , Linfócitos T/patologia , Linhagem Celular Tumoral , Imunoterapia , Engenharia Genética , Receptores de Antígenos de Linfócitos T/genética , Melanoma Experimental/terapia , Melanoma Experimental/patologia
4.
bioRxiv ; 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37609127

RESUMO

PRDM16 is a dynamic transcriptional regulator of various stem cell niches, including adipocytic, hematopoietic, cardiac progenitors, and neural stem cells. PRDM16 has been suggested to contribute to 1p36 deletion syndrome, one of the most prevalent subtelomeric microdeletion syndromes. We report a patient with a de novo nonsense mutation in the PRDM16 coding sequence, accompanied by lissencephaly and microcephaly features. Human stem cells were genetically modified to mimic this mutation, generating cortical organoids that exhibited altered cell cycle dynamics. RNA sequencing of cortical organoids at day 32 unveiled changes in cell adhesion and WNT-signaling pathways. ChIP-seq of PRDM16 identified binding sites in postmortem human fetal cortex, indicating the conservation of PRDM16 binding to developmental genes in mice and humans, potentially at enhancer sites. A shared motif between PRDM16 and LHX2 was identified and further examined through comparison with LHX2 ChIP-seq data from mice. These results suggested a collaborative partnership between PRDM16 and LHX2 in regulating a common set of genes and pathways in cortical radial glia cells, possibly via their synergistic involvement in cortical development.

5.
J Dev Orig Health Dis ; 14(3): 437-448, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36632790

RESUMO

In The Pune Maternal Nutrition Study, vitamin B12 deficiency was seen in 65% of pregnant women, folate deficiency was rare. Maternal total homocysteine concentrations were inversely associated with offspring birthweight, and low vitamin B12 and high folate concentrations predicted higher offspring adiposity and insulin resistance. These findings guided a nested pre-conceptional randomised controlled trial 'Pune Rural Intervention in Young Adolescents'. The interventions included: (1) vitamin B12+multi-micronutrients as per the United Nations International Multiple Micronutrient Antenatal Preparation, and proteins (B12+MMN), (2) vitamin B12 (B12 alone), and (3) placebo. Intervention improved maternal pre-conceptional and in-pregnancy micronutrient nutrition. Gene expression analysis in cord blood mononuclear cells in 88 pregnancies revealed 75 differentially expressed genes between the B12+MMN and placebo groups. The enriched biological processes included G2/M phase transition, chromosome segregation, and nuclear division. Enriched pathways included, mitotic spindle checkpoint and DNA damage response while enriched human phenotypes were sloping forehead and decreased head circumference. Fructose-bisphosphatase 2 (FBP2) and Cell Division Cycle Associated 2 (CDCA2) genes were under-expressed in the B12 alone group. The latter, involved in chromosome segregation was under-expressed in both intervention groups. Based on the role of B-complex vitamins in the synthesis of nucleotides and S-adenosyl methionine, and the roles of vitamins A and D on gene expression, we propose that the multi-micronutrient intervention epigenetically affected cell cycle dynamics. Neonates in the B12+MMN group had the highest ponderal index. Follow-up studies will reveal if the intervention and the altered biological processes influence offspring diabesity.


Assuntos
Sangue Fetal , Micronutrientes , Recém-Nascido , Feminino , Adolescente , Gravidez , Humanos , Índia , Vitaminas , Vitamina B 12 , Ácido Fólico
6.
Nucleic Acids Res ; 50(9): 4938-4958, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35511484

RESUMO

Th17 cells are essential for protection against extracellular pathogens, but their aberrant activity can cause autoimmunity. Molecular mechanisms that dictate Th17 cell-differentiation have been extensively studied using mouse models. However, species-specific differences underscore the need to validate these findings in human. Here, we characterized the human-specific roles of three AP-1 transcription factors, FOSL1, FOSL2 and BATF, during early stages of Th17 differentiation. Our results demonstrate that FOSL1 and FOSL2 co-repress Th17 fate-specification, whereas BATF promotes the Th17 lineage. Strikingly, FOSL1 was found to play different roles in human and mouse. Genome-wide binding analysis indicated that FOSL1, FOSL2 and BATF share occupancy over regulatory regions of genes involved in Th17 lineage commitment. These AP-1 factors also share their protein interacting partners, which suggests mechanisms for their functional interplay. Our study further reveals that the genomic binding sites of FOSL1, FOSL2 and BATF harbour hundreds of autoimmune disease-linked SNPs. We show that many of these SNPs alter the ability of these transcription factors to bind DNA. Our findings thus provide critical insights into AP-1-mediated regulation of human Th17-fate and associated pathologies.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Antígeno 2 Relacionado a Fos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células Th17 , Fator de Transcrição AP-1 , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diferenciação Celular , Antígeno 2 Relacionado a Fos/genética , Antígeno 2 Relacionado a Fos/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Células Th17/citologia , Células Th17/metabolismo , Fator de Transcrição AP-1/metabolismo
7.
J Nutr Sci ; 10: e91, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733503

RESUMO

Maternal and child malnutrition and anaemia remain the leading factors for health loss in India. Low birth weight (LBW) offspring of women suffering from chronic malnutrition and anaemia often exhibit insulin resistance and infantile stunting and wasting, together with increased risk of developing cardiometabolic disorders in adulthood. The resulting self-perpetuating and highly multifactorial disease burden cannot be remedied through uniform dietary recommendations alone. To inform approaches likely to alleviate this disease burden, we implemented a systems-analytical approach that had already proven its efficacy in multiple published studies. We utilised previously published qualitative and quantitative analytical results of rural and urban field studies addressing maternal and infantile metabolic and nutritional parameters to precisely define the range of pathological phenotypes encountered and their individual biological characteristics. These characteristics were then integrated, via extensive literature searches, into metabolic and physiological mechanisms to identify the maternal and foetal metabolic dysregulations most likely to underpin the 'thin-fat' phenotype in LBW infants and its associated pathological consequences. Our analyses reveal hitherto poorly understood maternal nutrition-dependent mechanisms most likely to promote and sustain the self-perpetuating high disease burden, especially in the Indian population. This work suggests that it most probably is the metabolic consequence of 'ill-nutrition' - the recent and rapid dietary shifts to high salt, high saturated fats and high sugar but low micronutrient diets - over an adaptation to 'thrifty metabolism' which must be addressed in interventions aiming to significantly alleviate the leading risk factors for health deterioration in India.


Assuntos
Anemia , Desnutrição , Adulto , Anemia/epidemiologia , Feminino , Humanos , Índia/epidemiologia , Recém-Nascido de Baixo Peso , Recém-Nascido , Desnutrição/complicações , Fenótipo
8.
Front Immunol ; 12: 660361, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526984

RESUMO

Gamma delta (γδ) T cells, especially the Vγ9Vδ2 subtype, have been implicated in cancer therapy and thus have earned the spotlight in the past decade. Although one of the most important properties of γδ T cells is their activation by phosphoantigens, which are intermediates of the Mevalonate and Rohmer pathway of isoprenoid biosynthesis, such as IPP and HDMAPP, respectively, the global effects of such treatments on Vγ9Vδ2 T cells remain elusive. Here, we used the high-throughput transcriptomics approach to elucidate the transcriptional changes in human Vγ9Vδ2 T cells upon HDMAPP, IPP, and anti-CD3 treatments in combination with interleukin 2 (IL2) cytokine stimulation. These activation treatments exhibited a dramatic surge in transcription with distinctly enriched pathways. We further assessed the transcriptional dynamics upon inhibition of Notch signaling coupled with activation treatments. We observed that the metabolic processes are most affected upon Notch inhibition via GSI-X. The key effector genes involved in gamma-delta cytotoxic function were downregulated upon Notch blockade even in combination with activation treatment, suggesting a transcriptional crosstalk between T-cell receptor (TCR) signaling and Notch signaling in Vγ9Vδ2 T cells. Collectively, we demonstrate the effect of the activation of TCR signaling by phosphoantigens or anti-CD3 on the transcriptional status of Vγ9Vδ2 T cells along with IL2 stimulation. We further show that the blockade of Notch signaling antagonistically affects this activation.


Assuntos
Antígenos/farmacologia , Perfilação da Expressão Gênica , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores Notch/imunologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Transcriptoma/imunologia , Antígenos/química , Humanos , Interleucina-2/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores Notch/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/imunologia , Transcriptoma/genética
9.
Front Genet ; 12: 681053, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552611

RESUMO

Studies over the past four decades have elucidated the role of Wnt/ß-catenin mediated regulation in cell proliferation, differentiation and migration. These processes are fundamental to embryonic development, regeneration potential of tissues, as well as cancer initiation and progression. In this review, we focus on the epigenetic players which influence the Wnt/ß-catenin pathway via modulation of its components and coordinated regulation of the Wnt target genes. The role played by crosstalk with other signaling pathways mediating tumorigenesis is also elaborated. The Hippo/YAP pathway is particularly emphasized due to its extensive crosstalk via the Wnt destruction complex. Further, we highlight the recent advances in developing potential therapeutic interventions targeting the epigenetic machinery based on the characterization of these regulatory networks for effective treatment of various cancers and also for regenerative therapies.

10.
Sci Rep ; 11(1): 3385, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33564000

RESUMO

Special AT-rich binding protein-1 (SATB1) integrates higher-order chromatin architecture with gene regulation, thereby regulating multiple signaling pathways. In mammalian cells SATB1 directly interacts with ß-catenin and regulates the expression of Wnt targets by binding to their promoters. Whether SATB1 regulates Wnt/wg signaling by recruitment of ß-catenin and/or its interactions with other components remains elusive. Since Wnt/Wg signaling is conserved from invertebrates to humans, we investigated SATB1 functions in regulation of Wnt/Wg signaling by using mammalian cell-lines and Drosophila. Here, we present evidence that in mammalian cells, SATB1 interacts with Dishevelled, an upstream component of the Wnt/Wg pathway. Conversely, ectopic expression of full-length human SATB1 but not that of its N- or C-terminal domains in the eye imaginal discs and salivary glands of third instar Drosophila larvae increased the expression of Wnt/Wg pathway antagonists and suppressed phenotypes associated with activated Wnt/Wg pathway. These data argue that ectopically-provided SATB1 presumably modulates Wnt/Wg signaling by acting as negative regulator in Drosophila. Interestingly, comparison of SATB1 with PDZ- and homeo-domain containing Drosophila protein Defective Proventriculus suggests that both proteins exhibit limited functional similarity in the regulation of Wnt/Wg signaling in Drosophila. Collectively, these findings indicate that regulation of Wnt/Wg pathway by SATB1 is context-dependent.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Via de Sinalização Wnt , Proteína Wnt1/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Células HEK293 , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteína Wnt1/genética
11.
J Exp Biol ; 223(Pt 20)2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32958523

RESUMO

The bell-shaped members of the Cnidaria typically move around by swimming, whereas the Hydra polyp can perform locomotion on solid substrates in an aquatic environment. To address the biomechanics of locomotion on rigid substrates, we studied the 'somersaulting' locomotion in Hydra We applied atomic force microscopy to measure the local mechanical properties of Hydra's body column and identified the existence of differential Young's modulus between the shoulder region versus rest of the body column at 3:1 ratio. We show that somersaulting primarily depends on differential tissue stiffness of the body column and is explained by computational models that accurately recapitulate the mechanics involved in this process. We demonstrate that perturbation of the observed stiffness variation in the body column by modulating the extracellular matrix polymerization impairs the 'somersault' movement. These results provide a mechanistic basis for the evolutionary significance of differential extracellular matrix properties and tissue stiffness.


Assuntos
Hydra , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Locomoção , Microscopia de Força Atômica
12.
iScience ; 11: 334-355, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30641411

RESUMO

Th17 cells contribute to the pathogenesis of inflammatory and autoimmune diseases and cancer. To reveal the Th17 cell-specific proteomic signature regulating Th17 cell differentiation and function in humans, we used a label-free mass spectrometry-based approach. Furthermore, a comprehensive analysis of the proteome and transcriptome of cells during human Th17 differentiation revealed a high degree of overlap between the datasets. However, when compared with corresponding published mouse data, we found very limited overlap between the proteins differentially regulated in response to Th17 differentiation. Validations were made for a panel of selected proteins with known and unknown functions. Finally, using RNA interference, we showed that SATB1 negatively regulates human Th17 cell differentiation. Overall, the current study illustrates a comprehensive picture of the global protein landscape during early human Th17 cell differentiation. Poor overlap with mouse data underlines the importance of human studies for translational research.

13.
Oncogene ; 38(12): 1989-2004, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30413763

RESUMO

SATB (Special AT-rich binding protein) family proteins have emerged as key regulators that integrate higher-order chromatin organization with the regulation of gene expression. Studies over the past decade have elucidated the specific roles of SATB1 and SATB2, two closely related members of this family, in cancer progression. SATB family chromatin organizers play diverse and important roles in regulating the dynamic equilibrium of apoptosis, cell invasion, metastasis, proliferation, angiogenesis, and immune modulation. This review highlights cellular and molecular events governed by SATB1 influencing the structural organization of chromatin and interacting with several co-activators and co-repressors of transcription towards tumor progression. SATB1 expression across tumor cell types generates cellular and molecular heterogeneity culminating in tumor relapse and metastasis. SATB1 exhibits dynamic expression within intratumoral cell types regulated by the tumor microenvironment, which culminates towards tumor progression. Recent studies suggested that cell-specific expression of SATB1 across tumor recruited dendritic cells (DC), cytotoxic T lymphocytes (CTL), T regulatory cells (Tregs) and tumor epithelial cells along with tumor microenvironment act as primary determinants of tumor progression and tumor inflammation. In contrast, SATB2 is differentially expressed in an array of cancer types and is involved in tumorigenesis. Survival analysis for patients across an array of cancer types correlated with expression of SATB family chromatin organizers suggested tissue-specific expression of SATB1 and SATB2 contributing to disease prognosis. In this context, it is pertinent to understand molecular players, cellular pathways, genetic and epigenetic mechanisms governed by cell types within tumors regulated by SATB proteins. We propose that patient survival analysis based on the expression profile of SATB chromatin organizers would facilitate their unequivocal establishment as prognostic markers and therapeutic targets for cancer therapy.


Assuntos
Cromatina/metabolismo , Progressão da Doença , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Carcinogênese , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/imunologia
14.
Mol Cell Biol ; 38(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30181396

RESUMO

The ubiquitous transcription factor specificity protein 1 (SP1) is heavily modified posttranslationally. These modifications are critical for switching its functions and modulation of its transcriptional activity and DNA binding and stability. However, the mechanism governing the stability of SP1 by cellular signaling pathways is not well understood. Here, we provide biochemical and functional evidence that SP1 is an integral part of the Wnt signaling pathway. We identified a phosphodegron motif in SP1 that is specific to mammals. In the absence of Wnt signaling, glycogen synthase kinase 3ß (GSK3ß)-mediated phosphorylation and ß-TrCP E3 ubiquitin ligase-mediated ubiquitination are required to induce SP1 degradation. When Wnt signaling is on, SP1 is stabilized in a ß-catenin-dependent manner. SP1 directly interacts with ß-catenin, and Wnt signaling induces the stabilization of SP1 by impeding its interaction with ß-TrCP and axin1, components of the destruction complex. Wnt signaling suppresses ubiquitination and subsequent proteosomal degradation of SP1. Furthermore, SP1 regulates Wnt-dependent stability of ß-catenin and their mutual stabilization is critical for target gene expression, suggesting a feedback mechanism. Upon stabilization, SP1 and ß-catenin cooccupy the promoters of TCFL2/ß-catenin target genes. Collectively, this study uncovers a direct link between SP1 and ß-catenin in the Wnt signaling pathway.


Assuntos
Complexo de Sinalização da Axina/genética , Fator de Transcrição Sp1/genética , Via de Sinalização Wnt/genética , beta Catenina/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Glicogênio Sintase Quinase 3 beta/genética , Células HCT116 , Células HEK293 , Humanos , Fosforilação/genética , Alinhamento de Sequência , Transcrição Gênica/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Proteínas Contendo Repetições de beta-Transducina/genética
15.
BMC Genomics ; 19(1): 313, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29716520

RESUMO

BACKGROUND: In contrast to unidirectional promoters wherein antisense transcription results in short transcripts which are rapidly degraded, bidirectional promoters produce mature transcripts in both sense and antisense orientation. To understand the molecular mechanism of how productive bidirectional transcription is regulated, we focused on delineating the chromatin signature of bidirectional promoters. RESULTS: We report generation and utility of a reporter system that enables simultaneous scoring of transcriptional activity in opposite directions. Testing of putative bidirectional promoters in this system demonstrates no measurable bias towards any one direction of transcription. We analyzed the NUP26L-PIH1D3 bidirectional gene pair during Retinoic acid mediated differentiation of embryonic carcinoma cells. In their native context, we observed that the chromatin landscape at and around the transcription regulatory region between the pair of bidirectional genes is modulated in concordance with transcriptional activity of each gene in the pair. We then extended this analysis to 974 bidirectional gene pairs in two different cell lines, H1 human embryonic stem cells and CD4 positive T cells using publicly available ChIP-Seq and RNA-Seq data. Bidirectional gene pairs were classified based on the intergenic distance separating the two TSS of the transcripts analyzed as well as the relative expression of each transcript in a bidirectional gene pair. We report that for the entire range of intergenic distance separating bidirectional genes, the expression profile of such genes (symmetric or asymmetric) matches the histone modification profile of marks associated with active transcription initiation and elongation. CONCLUSIONS: We demonstrate unique distribution of histone modification marks that correlate robustly with the transcription status of genes regulated by bidirectional promoters. These findings strongly imply that occurrence of these marks might signal the transcription machinery to drive maturation of antisense transcription from the bidirectional promoters.


Assuntos
Cromatina/genética , Regiões Promotoras Genéticas/genética , Transcrição Gênica/genética , Genes Reporter/genética , Genômica , Histonas/genética , Humanos
16.
Zoology (Jena) ; 123: 53-63, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28720323

RESUMO

Histones are fundamental components of chromatin in all eukaryotes. Hydra, an emerging model system belonging to the basal metazoan phylum Cnidaria, provides an ideal platform to understand the evolution of core histone components at the base of eumetazoan phyla. Hydra exhibits peculiar properties such as tremendous regenerative capacity, lack of organismal senescence and rarity of malignancy. In light of the role of histone modifications and histone variants in these processes it is important to understand the nature of histones themselves and their variants in hydra. Here, we report identification of the complete repertoire of histone-coding genes in the Hydra magnipapillata genome. Hydra histones were classified based on their copy numbers, gene structure and other characteristic features. Genomic organization of canonical histone genes revealed the presence of H2A-H2B and H3-H4 paired clusters in high frequency and also a cluster with all core histones along with H1. Phylogenetic analysis of identified members of H2A and H2B histones suggested rapid expansion of these groups in Hydrozoa resulting in the appearance of unique subtypes. Amino acid sequence level comparisons of H2A and H2B forms with bilaterian counterparts suggest the possibility of a highly mobile nature of nucleosomes in hydra. Absolute quantitation of transcripts confirmed the high copy number of histones and supported the canonical nature of H2A. Furthermore, functional characterization of H2A.X.1 and a unique variant H2A.X.2 in the gastric region suggest their role in the maintenance of genome integrity and differentiation processes. These findings provide insights into the evolution of histones and their variants in hydra.


Assuntos
Evolução Molecular , Histonas/metabolismo , Hydra/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Dano ao DNA , Regulação da Expressão Gênica/fisiologia , Variação Genética , Histonas/genética , Hydra/genética , Filogenia , RNA/genética , RNA/metabolismo
17.
Mech Dev ; 138 Pt 2: 87-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26278345

RESUMO

Hox and ParaHox genes play decisive roles in patterning the anterior-posterior body axis in Bilateria. Evolutionary origin of Hox genes and primary body axis predate the divergence of Bilateria and Cnidaria. However, function of Cnidarian Hox-like genes and their regulation in axis determination is obscure due to studies limited to a few representative model systems. Present investigation is conducted using Hydra, a Hydrozoan member of phylum Cnidaria, to gain insights into the roles of Cnidarian Hox-like genes in primary axis formation. Here, we report identification of six Hox-like genes from our in-house transcriptome data. Phylogenetic analysis of these genes shows bilaterian counterparts of Hox1, Gsx and Mox. Additionally, we report CnoxB_HVUL, CnoxC2_HVUL and CnoxC3_HVUL belonging to two Cnidarian specific groups. In situ hybridization analysis of Hydra homologues provided important clues about their possible roles in pattern formation of polyps and bud development. Specifically, Hox1_HVUL is regulated by Wnt signaling and plays critical role in head formation. Collating information about expression patterns of different Hox-like genes from previous reports and this study reveals no conformity within Cnidaria. Indicating that unlike in Bilateria, there is no consolidated Hox-code determining primary body axis in Cnidaria.


Assuntos
Padronização Corporal/genética , Cnidários/genética , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Hydra/genética , Animais , Evolução Molecular , Filogenia
18.
J Vis Exp ; (93): e52178, 2014 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-25490534

RESUMO

Hydra is among the most primitive organisms possessing a nervous system and chemosensation for detecting reduced glutathione (GSH) for capturing the prey. The movement of prey organisms causes mechanosensory discharge of the stinging cells called nematocysts from hydra, which are inserted into the prey. The feeding response in hydra, which includes curling of the tentacles to bring the prey towards the mouth, opening of the mouth and consequent engulfing of the prey, is triggered by GSH present in the fluid released from the injured prey. To be able to identify the molecular mechanism of the feeding response in hydra which is unknown to date, it is necessary to establish an assay to measure the feeding response. Here, we describe a simple method for the quantitation of the feeding response in which the distance between the apical end of the tentacle and mouth of hydra is measured and the ratio of such distance before and after the addition of GSH is determined. The ratio, called the relative tentacle spread, was found to give a measure of the feeding response. This assay was validated using a starvation model in which starved hydra show an enhanced feeding response in comparison with daily fed hydra.


Assuntos
Comportamento Alimentar/fisiologia , Glutationa/farmacologia , Hydra/fisiologia , Comportamento Predatório/fisiologia , Animais , Comportamento Alimentar/efeitos dos fármacos , Hydra/efeitos dos fármacos , Comportamento Predatório/efeitos dos fármacos
19.
Sci Rep ; 4: 6076, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25123547

RESUMO

In this study, we have investigated genome-wide occurrence of Histone Acetyltransferases (HATs) in genomes of Mus musculus and Danio rerio on the basis of presence of HAT domain. Our study identified a group of proteins that lacks characteristic features of known HAT families, relatively smaller in size and has no other associated domains. Most of the proteins in this unclassified group are Camello proteins, which are not yet known and classified as functional HATs. Our in vitro and in vivo analysis revealed that Camello family proteins are active HATs and exhibit specificity towards histone H4. Interestingly, Camello proteins are among the first identified HATs showing perinuclear localization. Moreover, Camello proteins are evolutionarily conserved in all chordates and are observed for the first time in cnidarians in phylogeny. Furthermore, knockdown of Camello protein (CMLO3) in zebrafish embryos exhibited defects in axis elongation and head formation. Thus, our study identified a novel family of active HATs that is specific for histone H4 acetylation, exhibits perinuclear localization and is essential for zebrafish development.


Assuntos
Padronização Corporal/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Peixe-Zebra/embriologia , Acetilação , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Lisina/química , Camundongos , Dados de Sequência Molecular , Morfolinos/genética , Processamento de Proteína Pós-Traducional , Alinhamento de Sequência , Dedos de Zinco/genética
20.
Curr Drug Targets ; 13(13): 1603-15, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22998183

RESUMO

Cancer progression and metastasis involve series of alterations in the expression of multitude of genes. The structure and organization of chromatin play an important role in spatial arrangement of genes inside the nucleus thereby allowing different machineries to activate or silence the transcription of genes governed by various epigenetic events. Epigenetic modifications and dynamic changes in chromatin organization by organizer proteins have recently been shown to play an instrumental role in regulating cancer-promoting genes. Special AT-rich binding protein (SATB1) is a unique type of global regulator that integrates higher-order chromatin organization with regulation of gene expression. Aberrant expression of SATB1 has been shown to promote breast, hepatocellular, prostate and various other cancers. In this review we highlight upon the role of SATB1in chromatin organization and as global regulator of gene expression during cancer development. The expression of SATB1 progressively increases with the progression of cancers and it dynamically reprograms the expression of genes that are involved in epithelial-mesenchymal transition. SATB1 directly regulates the expression of ERRB2, MMP2, ABL1, E-cadherin and hence acts as key regulator in cancer development. Understanding the molecular mechanisms of regulation of SATB1 expression would therefore be extremely essential towards designing strategies to control it. Recent studies have provided important insights into regulation of SATB1 by FOXP3 and microRNAs. In this review we evaluate the potential of SATB1 as molecular target for cancer therapy.


Assuntos
Cromatina/metabolismo , Marcação de Genes/tendências , Terapia Genética/tendências , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Neoplasias/terapia , Animais , Cromatina/genética , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/genética , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA