Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(1): e0167488, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28099485

RESUMO

BACKGROUND: Vaccine development for influenza A/H5N1 is an important public health priority, but H5N1 vaccines are less immunogenic than seasonal influenza vaccines. Adjuvant System 03 (AS03) markedly enhances immune responses to H5N1 vaccine antigens, but the underlying molecular mechanisms are incompletely understood. OBJECTIVE AND METHODS: We compared the safety (primary endpoint), immunogenicity (secondary), gene expression (tertiary) and cytokine responses (exploratory) between AS03-adjuvanted and unadjuvanted inactivated split-virus H5N1 influenza vaccines. In a double-blinded clinical trial, we randomized twenty adults aged 18-49 to receive two doses of either AS03-adjuvanted (n = 10) or unadjuvanted (n = 10) H5N1 vaccine 28 days apart. We used a systems biology approach to characterize and correlate changes in serum cytokines, antibody titers, and gene expression levels in six immune cell types at 1, 3, 7, and 28 days after the first vaccination. RESULTS: Both vaccines were well-tolerated. Nine of 10 subjects in the adjuvanted group and 0/10 in the unadjuvanted group exhibited seroprotection (hemagglutination inhibition antibody titer > 1:40) at day 56. Within 24 hours of AS03-adjuvanted vaccination, increased serum levels of IL-6 and IP-10 were noted. Interferon signaling and antigen processing and presentation-related gene responses were induced in dendritic cells, monocytes, and neutrophils. Upregulation of MHC class II antigen presentation-related genes was seen in neutrophils. Three days after AS03-adjuvanted vaccine, upregulation of genes involved in cell cycle and division was detected in NK cells and correlated with serum levels of IP-10. Early upregulation of interferon signaling-related genes was also found to predict seroprotection 56 days after first vaccination. CONCLUSIONS: Using this cell-based systems approach, novel mechanisms of action for AS03-adjuvanted pandemic influenza vaccination were observed. TRIAL REGISTRATION: ClinicalTrials.gov NCT01573312.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Biologia de Sistemas/métodos , Adolescente , Adulto , Anticorpos Antivirais/sangue , Formação de Anticorpos/imunologia , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Quimiocina CXCL10/sangue , Células Dendríticas/imunologia , Método Duplo-Cego , Feminino , Testes de Inibição da Hemaglutinação , Humanos , Influenza Humana/imunologia , Interleucina-6/sangue , Células Matadoras Naturais/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Neutrófilos/imunologia , Vacinação , Adulto Jovem
2.
Proteomics Clin Appl ; 9(11-12): 972-89, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26172619

RESUMO

Vaccines are one of the greatest public health successes; yet, due to the empirical nature of vaccine design, we have an incomplete understanding of how the genes and proteins induced by vaccines contribute to the development of both protective innate and adaptive immune responses. While the advent of genomics has enabled new vaccine development and facilitated understanding of the immune response, proteomics identifies potentially new vaccine antigens with increasing speed and sensitivity. In addition, as proteomics is complementary to transcriptomic approaches, a combination of both approaches provides a more comprehensive view of the immune response after vaccination via systems vaccinology. This review details the advances that proteomic strategies have made in vaccine development and reviews how proteomics contributes to the development of a more complete understanding of human vaccines and immune responses.


Assuntos
Imunidade , Proteômica/métodos , Vacinas , Animais , Antígenos/imunologia , Vacinas Anticâncer/imunologia , Humanos , Vacinação , Vacinas/imunologia
3.
PLoS One ; 10(2): e0118528, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706537

RESUMO

Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses.


Assuntos
Sangue/imunologia , Vacinas contra Influenza/imunologia , Biologia de Sistemas , Humanos , Vacinas contra Influenza/administração & dosagem , Proteoma , Estações do Ano , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA