Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003687

RESUMO

Cardiovascular diseases, especially ischemic heart disease, as a leading cause of heart failure (HF) and mortality, will not reduce over the coming decades despite the progress in pharmacotherapy, interventional cardiology, and surgery. Although patients surviving acute myocardial infarction live longer, alteration of heart function will later lead to HF. Its rising incidence represents a danger, especially among the elderly, with data showing more unfavorable results among females than among males. Experiments revealed an infarct-sparing effect of ischemic "preconditioning" (IPC) as the most robust form of innate cardioprotection based on the heart's adaptation to moderate stress, increasing its resistance to severe insults. However, translation to clinical practice is limited by technical requirements and limited time. Novel forms of adaptive interventions, such as "remote" IPC, have already been applied in patients, albeit with different effectiveness. Cardiac ischemic tolerance can also be increased by other noninvasive approaches, such as adaptation to hypoxia- or exercise-induced preconditioning. Although their molecular mechanisms are not yet fully understood, some noninvasive modalities appear to be promising novel strategies for fighting HF through targeting its numerous mechanisms. In this review, we will discuss the molecular mechanisms of heart injury and repair, as well as interventions that have potential to be used in the treatment of patients.


Assuntos
Insuficiência Cardíaca , Precondicionamento Isquêmico Miocárdico , Infarto do Miocárdio , Isquemia Miocárdica , Masculino , Humanos , Idoso , Precondicionamento Isquêmico Miocárdico/métodos , Coração , Isquemia , Insuficiência Cardíaca/terapia
2.
PLoS One ; 17(6): e0269885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35696396

RESUMO

Monitoring the levels of IgG antibodies against the SARS-CoV-2 is important during the coronavirus disease 2019 (COVID-19) pandemic, to plan an adequate and evidence-based public health response. After this study we report that the plasma levels of IgG antibodies against SARS-CoV-2 spike protein were higher in individuals with evidence of prior infection who received at least one dose of either an mRNA-based vaccine (Comirnaty BNT162b2/Pfizer-BioNTech or Spikevax mRNA-1273/Moderna) or an adenoviral-based vaccine (Vaxzervia ChAdOx1 nCoV-19 /Oxford-Astra Zeneca) (n = 39) compared to i) unvaccinated individuals with evidence of prior infection with SARS-CoV-2 (n = 109) and ii) individuals without evidence of prior infection with SARS-CoV-2 who received one or two doses of one of the aforementioned vaccines (n = 342). Our analysis also revealed that regardless of the vaccine technology (mRNA-based and adenoviral vector-based) two doses achieved high anti- SARS-CoV-2 IgG responses. Our results indicate that vaccine-induced responses lead to higher levels of IgG antibodies compared to those produced following infection with the virus. Additionally, in agreement with previous studies, our results suggest that among individuals previously infected with SARS-CoV-2, even a single dose of a vaccine is adequate to elicit high levels of antibody response.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Antivirais , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , ChAdOx1 nCoV-19 , Chipre , Humanos , Imunoglobulina G , RNA Mensageiro , SARS-CoV-2 , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus
3.
Antioxidants (Basel) ; 11(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35739957

RESUMO

Nonalcoholic steatohepatitis (NASH) is the most severe manifestation of nonalcoholic fatty liver disease (NAFLD), a common complication of type 2 diabetes, and may lead to cirrhosis and hepatocellular carcinoma. Oxidative stress and liver cell damage are the major triggers of the severe hepatic inflammation that characterizes NASH, which is highly correlated with atherosclerosis and coronary artery disease. Regarding drug therapy, research on the role of GLP-1 analogues and DPP4 inhibitors, novel classes of antidiabetic drugs, is growing. In this review, we outline the association between NASH and atherosclerosis, the underlying molecular mechanisms, and the effects of incretin-based drugs, especially GLP-1 RAs, for the therapeutic management of these conditions.

4.
Mol Cell Biochem ; 395(1-2): 145-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24939361

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily and appear to have beneficial effects in the cardiovascular system. PPARß/δ has been shown previously to exert an inhibitory effect on cardiac myocyte hypertrophy in vivo and in vitro although the exact mechanism is not fully clear yet. The principal signaling pathways that have been involved in triggering cardiac hypertrophic response are mitogen-activated protein kinases (MAPKs) and PI3K/Akt cascades. In this study, we sought to evaluate the potential effects evoked by PPARß/δ activation on signaling pathways that are implicated in cardiac myocyte growth responses. The selective PPARß/δ agonist GW0742 attenuated ERK1/2 and Akt phosphorylation that was stimulated by growth promoting agonists (phenylephrine, insulin or IGF-1). This effect was not reversed by the specific PPARß/δ antagonist, GSK0660, but was inhibited by vanadate, a potent protein tyrosine phosphatase inhibitor. In addition, GW0742 prevented the oxidation and inactivation of PTEN supporting further the notion that its inhibitory action on the agonist-induced kinase phosphorylation is mediated by the modulation of phosphatase activity. Furthermore, GW0742 abolished the agonist-induced intracellular generation of reactive oxygen species, independently of PPARß/δ activation. Our data reveals a new non-genomic mechanism of GW0742, which ameliorates the generation of reactive oxygen species and attenuates ERK1/2 and PI3K/Akt signaling, with implications in the regulation of cardiac hypertrophic response.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Miócitos Cardíacos/citologia , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Sulfonas/farmacologia , Tiazóis/farmacologia , Tiofenos/farmacologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Vanadatos/farmacologia
5.
Mol Cell Biochem ; 388(1-2): 195-201, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24276754

RESUMO

According to a compelling body of evidence anesthetic preconditioning (APC) attenuates the deleterious consequences of ischemia-reperfusion and protects the heart through a mechanism similar to ischemic preconditioning. The present study was purported to investigate the intracellular signaling pathways activated in human myocardium in response to a preconditioning protocol with two different volatile anesthetics, namely isoflurane and sevoflurane. To this aim, phosphorylation of PKCα and -δ, ERK1/2, Akt, and GSK3ß was determined at the end of the APC protocol, in human atrial samples harvested from patients undergoing open-heart surgery. The results demonstrate that preconditioning with volatile anesthetics triggers the activation of PKCδ and -α isoforms and of prosurvival kinases, ERK1/2, and Akt, while inhibiting their downstream target GSK3ß during the memory phase.


Assuntos
Anestésicos Gerais/farmacologia , Coração/efeitos dos fármacos , Precondicionamento Isquêmico Miocárdico/métodos , Isquemia Miocárdica/prevenção & controle , Idoso , Anestésicos Gerais/administração & dosagem , Anestésicos Inalatórios/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Isoflurano/farmacologia , Masculino , Éteres Metílicos/farmacologia , Pessoa de Meia-Idade , Fosforilação , Projetos Piloto , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sevoflurano , Transdução de Sinais/efeitos dos fármacos , Cirurgia Torácica
6.
Can J Physiol Pharmacol ; 91(8): 608-16, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23889688

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors regulating cardiac lipid metabolism and energy homeostasis. Although the activation of PPARs has been implicated in cardioprotection, the molecular mechanisms are largely unexplored. In this study, we aimed to investigate the effect of the PPAR-α agonist WY-14643 (WY), mimicking a delayed effect of preconditioning in rat hearts exposed to acute ischaemia-reperfusion (I/R) 24 h later, and to define whether antioxidative and antiapoptotic mechanisms are involved. Treatment with WY markedly attenuated post-ischaemic contractile dysfunction (as evidenced by the reduced infarct size), the higher left ventricular developed pressure (LVDP) recovery, and the decreased occurrence of arrhythmias. These effects were abolished in the presence of the PPAR-α antagonist MK886. Heme oxygenase-1, a key antioxidative enzyme implicated in cytoprotection, was upregulated in response to WY at baseline, but was markedly reduced after I/R, indicating reduced oxidative stress. WY treatment was also associated with decreased mRNA levels and enzymatic activity of matrix metalloproteinase-2, and increased ratios of Bcl-2:Bax proteins. These results indicate that PPAR-α activation by its selective ligand WY may confer delayed preconditioning-like protection in rat hearts subjected to I/R by modulating oxidative stress, activation of matrix metalloproteinase-2, and expression of Bcl-2 and Bax.


Assuntos
Metaloproteinase 2 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Traumatismo por Reperfusão Miocárdica , PPAR alfa/agonistas , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Pirimidinas/farmacologia , Animais , Testes de Função Cardíaca , Técnicas In Vitro , Masculino , Contração Miocárdica/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Miocárdio/patologia , Ratos , Ratos Wistar , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos
7.
Can J Physiol Pharmacol ; 90(8): 1135-44, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22809038

RESUMO

Peroxisome proliferator-activated receptors (PPAR) regulate the expression of genes involved in lipid metabolism, energy production, and inflammation. Their role in ischaemia-reperfusion (I/R) is less clear, although research indicates involvement of PPARs in some forms of preconditioning. This study aimed to explore the effects of PPAR-α activation on the I/R injury and potential cardioprotective downstream mechanisms involved. Langendorff-perfused hearts of rats pretreated with the selective PPAR-α agonist WY-14643 (WY, pirinixic acid; 3 mg·(kg body mass)·day(-1); 5 days) were subjected to 30 min ischaemia - 2 h reperfusion with or without the phosphatidylinositol 3-kinase (PI3K)-Akt inhibitor wortmannin for the evaluation of functional (left ventricular developed pressure, LVDP) recovery, infarct size (IS), and reperfusion-induced arrhythmias. A 2-fold increase in baseline PPAR-α mRNA levels (qPCR) in the WY-treated group and higher post-I/R PPAR-α levels compared with those in untreated controls were accompanied by similar changes in the expression of PPAR-α target genes PDK4 and mCPT-1, regulating glucose and fatty acid metabolism, and by enhanced Akt phosphorylation. Post-ischaemic LVDP restoration in WY-treated hearts reached 60% ± 9% of the pre-ischaemic values compared with 24% ± 3% in the control hearts (P < 0.05), coupled with reduced IS and incidence of ventricular fibrillation that was blunted by wortmannin. Results indicate that PPAR-α up-regulation may confer preconditioning-like protection via metabolic effects. Downstream mechanisms of PPAR-α-mediated cardioprotection may involve PI3K-Akt activation.


Assuntos
Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/fisiopatologia , PPAR alfa/fisiologia , Fosfatidilinositol 3-Quinase/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Androstadienos/farmacologia , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , Quimases/biossíntese , Modelos Animais de Doenças , Masculino , Infarto do Miocárdio/complicações , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/metabolismo , PPAR alfa/biossíntese , Proliferadores de Peroxissomos/antagonistas & inibidores , Proliferadores de Peroxissomos/farmacologia , Proliferadores de Peroxissomos/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/biossíntese , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/antagonistas & inibidores , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Wortmanina
8.
Eur J Pharmacol ; 667(1-3): 298-305, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21664904

RESUMO

Levosimendan is a cardiovascular drug for the treatment of acute and decompensated heart failure. The current weight of evidence on the cardioprotective effects of levosimendan originates from whole heart models and there is no information on the mechanism whereby signalling pathways are activated. In the present study, we investigated the effect of levosimendan on ischaemia/reperfusion injury and the underlying mechanism in cardiac myocytes. Pretreatment with levosimendan reversed the effects of ischaemia and ischaemia/reperfusion on cell viability and enhanced phosphorylation of Akt, p38-mitogen activated protein kinase (MAPK) and extracellular signal-regulated kinases 1/2 (ERK1/2). Inhibitors of these kinases and the blocker of the mitochondrial K(ATP) channels, 5-hydroxydecanoate, completely abolished the protection afforded by levosimendan. Levosimendan stimulated the phosphorylation of Akt, ERK1/2 and p38-MAPK with different kinetics and the activation of these pathways was dependent on the opening of the mitochondrial K(ATP) channels and the production of oxygen free radicals. The levosimendan-induced phosphorylation of ERK1/2 and Akt was reduced by inhibitors of epidermal growth factor receptor and Src. On the other hand, inhibition of the protein kinase A (PKA) pathway reduced phosphorylation of p38-MAPK. Furthermore, p38-MAPK was activated when a phosphodiesterase inhibitor or a selective PKA activator was used. Overall, our results suggest that levosimendan regulates the wiring of the natural salvaging pathways to execute the prosurvival signals. This network includes Akt, ERK1/2 and p38-MAPK. Opening of mitochondrial K(ATP) channels and the subsequent production of oxygen free radicals, the epidermal growth factor receptor/Src, and the cAMP/PKA pathways seem to mediate this response.


Assuntos
Cardiotônicos/farmacologia , Citoproteção/efeitos dos fármacos , Hidrazonas/farmacologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Piridazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Masculino , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Oxigênio/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Simendana , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA