Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 29(8): 1631-1642, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36689546

RESUMO

PURPOSE: DNA polymerase theta (Polθ, encoded by the POLQ gene) is a DNA repair enzyme critical for microhomology mediated end joining (MMEJ). Polθ has limited expression in normal tissues but is frequently overexpressed in cancer cells and, therefore, represents an ideal target for tumor-specific radiosensitization. In this study we evaluate whether targeting Polθ with novel small-molecule inhibitors is a feasible strategy to improve the efficacy of radiotherapy. EXPERIMENTAL DESIGN: We characterized the response to Polθ inhibition in combination with ionizing radiation in different cancer cell models in vitro and in vivo. RESULTS: Here, we show that ART558 and ART899, two novel and specific allosteric inhibitors of the Polθ DNA polymerase domain, potently radiosensitize tumor cells, particularly when combined with fractionated radiation. Importantly, noncancerous cells were not radiosensitized by Polθ inhibition. Mechanistically, we show that the radiosensitization caused by Polθ inhibition is most effective in replicating cells and is due to impaired DNA damage repair. We also show that radiosensitization is still effective under hypoxia, suggesting that these inhibitors may help overcome hypoxia-induced radioresistance. In addition, we describe for the first time ART899 and characterize it as a potent and specific Polθ inhibitor with improved metabolic stability. In vivo, the combination of Polθ inhibition using ART899 with fractionated radiation is well tolerated and results in a significant reduction in tumor growth compared with radiation alone. CONCLUSIONS: These results pave the way for future clinical trials of Polθ inhibitors in combination with radiotherapy.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/radioterapia , Linhagem Celular Tumoral
2.
J Med Chem ; 65(20): 13879-13891, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36200480

RESUMO

Human DNA polymerase theta (Polθ), which is essential for microhomology-mediated DNA double strand break repair, has been proposed as an attractive target for the treatment of BRCA deficient and other DNA repair pathway defective cancers. As previously reported, we recently identified the first selective small molecule Polθ in vitro probe, 22 (ART558), which recapitulates the phenotype of Polθ loss, and in vivo probe, 43 (ART812), which is efficacious in a model of PARP inhibitor resistant TNBC in vivo. Here we describe the discovery, biochemical and biophysical characterization of these probes including small molecule ligand co-crystal structures with Polθ. The crystallographic data provides a basis for understanding the unique mechanism of inhibition of these compounds which is dependent on stabilization of a "closed" enzyme conformation. Additionally, the structural biology platform provided a basis for rational optimization based primarily on reduced ligand conformational flexibility.


Assuntos
Reparo do DNA por Junção de Extremidades , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Ligantes , DNA/metabolismo , DNA Polimerase teta
3.
Cancer Res Commun ; 2(10): 1244-1254, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36969741

RESUMO

PARP inhibitors (PARPi) are currently indicated for the treatment of ovarian, breast, pancreatic, and prostate cancers harboring mutations in the tumor suppressor genes BRCA1 or BRCA2. In the case of ovarian and prostate cancers, their classification as homologous recombination repair (HRR) deficient (HRD) or mutated also makes PARPi an available treatment option beyond BRCA1 or BRCA2 mutational status. However, identification of the most relevant genetic alterations driving the HRD phenotype has proven difficult and recent data have shown that other genetic alterations not affecting HRR are also capable of driving PARPi responses. To gain insight into the genetics driving PARPi sensitivity, we performed CRISPR-Cas9 loss-of-function screens in six PARPi-insensitive cell lines and combined the output with published PARPi datasets from eight additional cell lines. Ensuing exploration of the data identified 110 genes whose inactivation is strongly linked to sensitivity to PARPi. Parallel cell line generation of isogenic gene knockouts in ovarian and prostate cancer cell lines identified that inactivation of core HRR factors is required for driving in vitro PARPi responses comparable with the ones observed for BRCA1 or BRCA2 mutations. Moreover, pan-cancer genetic, transcriptomic, and epigenetic data analyses of these 110 genes highlight the ones most frequently inactivated in tumors, making this study a valuable resource for prospective identification of potential PARPi-responsive patient populations. Importantly, our investigations uncover XRCC3 gene silencing as a potential new prognostic biomarker of PARPi sensitivity in prostate cancer. Significance: This study identifies tumor genetic backgrounds where to expand the use of PARPis beyond mutations in BRCA1 or BRCA2. This is achieved by combining the output of unbiased genome-wide loss-of-function CRISPR-Cas9 genetic screens with bioinformatics analysis of biallelic losses of the identified genes in public tumor datasets, unveiling loss of the DNA repair gene XRCC3 as a potential biomarker of PARPi sensitivity in prostate cancer.


Assuntos
Neoplasias Ovarianas , Neoplasias da Próstata , Humanos , Masculino , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Estudos Prospectivos , Neoplasias da Próstata/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Biomarcadores
4.
J Hematol Oncol ; 14(1): 186, 2021 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-34742344

RESUMO

Poly ADP-ribose polymerase inhibitors (PARPi) have transformed ovarian cancer (OC) treatment, primarily for tumours deficient in homologous recombination repair. Combining VEGF-signalling inhibitors with PARPi has enhanced clinical benefit in OC. To study drivers of efficacy when combining PARP inhibition and VEGF-signalling, a cohort of patient-derived ovarian cancer xenografts (OC-PDXs), representative of the molecular characteristics and drug sensitivity of patient tumours, were treated with the PARPi olaparib and the VEGFR inhibitor cediranib at clinically relevant doses. The combination showed broad anti-tumour activity, reducing growth of all OC-PDXs, regardless of the homologous recombination repair (HRR) mutational status, with greater additive combination benefit in tumours poorly sensitive to platinum and olaparib. In orthotopic models, the combined treatment reduced tumour dissemination in the peritoneal cavity and prolonged survival. Enhanced combination benefit was independent of tumour cell expression of receptor tyrosine kinases targeted by cediranib, and not associated with change in expression of genes associated with DNA repair machinery. However, the combination of cediranib with olaparib was effective in reducing tumour vasculature in all the OC-PDXs. Collectively our data suggest that olaparib and cediranib act through complementary mechanisms affecting tumour cells and tumour microenvironment, respectively. This detailed analysis of the combined effect of VEGF-signalling and PARP inhibitors in OC-PDXs suggest that despite broad activity, there is no dominant common mechanistic inter-dependency driving therapeutic benefit.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Quinazolinas/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Feminino , Genes BRCA1/efeitos dos fármacos , Genes BRCA2/efeitos dos fármacos , Humanos , Camundongos Nus , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Nat Cell Biol ; 21(10): 1286-1299, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31570834

RESUMO

Damage-induced long non-coding RNAs (dilncRNA) synthesized at DNA double-strand breaks (DSBs) by RNA polymerase II are necessary for DNA-damage-response (DDR) focus formation. We demonstrate that induction of DSBs results in the assembly of functional promoters that include a complete RNA polymerase II preinitiation complex, MED1 and CDK9. Absence or inactivation of these factors causes a reduction in DDR foci both in vivo and in an in vitro system that reconstitutes DDR events on nucleosomes. We also show that dilncRNAs drive molecular crowding of DDR proteins, such as 53BP1, into foci that exhibit liquid-liquid phase-separation condensate properties. We propose that the assembly of DSB-induced transcriptional promoters drives RNA synthesis, which stimulates phase separation of DDR factors in the shape of foci.


Assuntos
Quinase 9 Dependente de Ciclina/genética , Reparo do DNA , DNA/genética , Subunidade 1 do Complexo Mediador/metabolismo , Transcrição Gênica , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Subunidade 1 do Complexo Mediador/genética , Osteoblastos/citologia , Osteoblastos/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
6.
Methods Mol Biol ; 1896: C3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30997669

RESUMO

Work in Fabrizio d'Adda di Fagagna's laboratory is supported by the Associazione Italiana per la Ricerca sul Cancro, AIRC (application 12971), Cariplo Foundation (grant 2010.0818 and 2014-0812), Fondazione Telethon (GGP12059 and GGP17111), Association for International Cancer Research (AICR-Worldwide Cancer Research Rif. N. 14-1331).

7.
Nat Commun ; 8: 15656, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561034

RESUMO

Of the many types of DNA damage, DNA double-strand breaks (DSBs) are probably the most deleterious. Mounting evidence points to an intricate relationship between DSBs and transcription. A cell system in which the impact on transcription can be investigated at precisely mapped genomic DSBs is essential to study this relationship. Here in a human cell line, we map genome-wide and at high resolution the DSBs induced by a restriction enzyme, and we characterize their impact on gene expression by four independent approaches by monitoring steady-state RNA levels, rates of RNA synthesis, transcription initiation and RNA polymerase II elongation. We consistently observe transcriptional repression in proximity to DSBs. Downregulation of transcription depends on ATM kinase activity and on the distance from the DSB. Our study couples for the first time, to the best of our knowledge, high-resolution mapping of DSBs with multilayered transcriptomics to dissect the events shaping gene expression after DSB induction at multiple endogenous sites.


Assuntos
Quebras de DNA de Cadeia Dupla , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Análise por Conglomerados , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Genoma Humano , Humanos , Camundongos , Células NIH 3T3 , Fosforilação , Análise de Sequência de DNA , Análise de Sequência de RNA , Transcrição Gênica , Transcriptoma
8.
Aging Cell ; 16(2): 422-427, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28124509

RESUMO

The DNA damage response (DDR) arrests cell cycle progression until DNA lesions, like DNA double-strand breaks (DSBs), are repaired. The presence of DSBs in cells is usually detected by indirect techniques that rely on the accumulation of proteins at DSBs, as part of the DDR. Such detection may be biased, as some factors and their modifications may not reflect physical DNA damage. The dependency on DDR markers of DSB detection tools has left questions unanswered. In particular, it is known that senescent cells display persistent DDR foci, that we and others have proposed to be persistent DSBs, resistant to endogenous DNA repair activities. Others have proposed that these peculiar DDR foci might not be sites of damaged DNA per se but instead stable chromatin modifications, termed DNA-SCARS. Here, we developed a method, named 'DNA damage in situ ligation followed by proximity ligation assay' (DI-PLA) for the detection and imaging of DSBs in cells. DI-PLA is based on the capture of free DNA ends in fixed cells in situ, by ligation to biotinylated double-stranded DNA oligonucleotides, which are next recognized by antibiotin anti-bodies. Detection is enhanced by PLA with a partner DDR marker at the DSB. We validated DI-PLA by demonstrating its ability to detect DSBs induced by various genotoxic insults in cultured cells and tissues. Most importantly, by DI-PLA, we demonstrated that both senescent cells in culture and tissues from aged mammals retain true unrepaired DSBs associated with DDR markers.


Assuntos
Envelhecimento/patologia , Senescência Celular , Dano ao DNA , Mamíferos/fisiologia , Análise de Célula Única/métodos , Animais , Linhagem Celular Tumoral , Senescência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Humanos , Camundongos , Reação em Cadeia da Polimerase , Radiação Ionizante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA