Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JAMA Netw Open ; 6(5): e2316067, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37256618

RESUMO

Importance: Preterm birth and socioeconomic status (SES) are associated with brain structure in childhood, but the relative contributions of each during the neonatal period are unknown. Objective: To investigate associations of birth gestational age (GA) and SES with neonatal brain morphology by testing 3 hypotheses: GA and SES are associated with brain morphology; associations between SES and brain morphology vary with GA; and associations between SES and brain structure and morphology depend on how SES is operationalized. Design, Setting, and Participants: This cohort study recruited participants from November 2016 to September 2021 at a single center in the United Kingdom. Participants were 170 extremely and very preterm infants and 91 full-term or near-term infants. Exclusion criteria were major congenital malformation, chromosomal abnormality, congenital infection, cystic periventricular leukomalacia, hemorrhagic parenchymal infarction, and posthemorrhagic ventricular dilatation. Exposures: Birth GA and SES, operationalized at the neighborhood level (using the Scottish Index of Multiple Deprivation), the family level (using parental education and occupation), and subjectively (World Health Organization Quality of Life measure). Main Outcomes and Measures: Brain volume (85 parcels) and 5 whole-brain cortical morphology measures (gyrification index, thickness, sulcal depth, curvature, surface area) at term-equivalent age (median [range] age, 40 weeks, 5 days [36 weeks, 2 days to 45 weeks, 6 days] and 42 weeks [38 weeks, 2 days to 46 weeks, 1 day] for preterm and full-term infants, respectively). Results: Participants were 170 extremely and very preterm infants (95 [55.9%] male; 4 of 166 [2.4%] Asian, 145 of 166 [87.3%] White) and 91 full-term or near-term infants (50 [54.9%] male; 3 of 86 [3.5%] Asian, 78 of 86 [90.7%] White infants) with median (range) birth GAs of 30 weeks, 0 days (22 weeks, 1 day, to 32 weeks, 6 days) and 39 weeks, 4 days (36 weeks, 3 days, to 42 weeks, 1 day), respectively. In fully adjusted models, birth GA was associated with a higher proportion of brain volumes (27 of 85 parcels [31.8%]; ß range, -0.20 to 0.24) than neighborhood-level SES (1 of 85 parcels [1.2%]; ß = 0.17 [95% CI, -0.16 to 0.50]) or family-level SES (maternal education: 4 of 85 parcels [4.7%]; ß range, 0.09 to 0.15; maternal occupation: 1 of 85 parcels [1.2%]; ß = 0.06 [95% CI, 0.02 to 0.11] respectively). There were interactions between GA and both family-level and subjective SES measures on regional brain volumes. Birth GA was associated with cortical surface area (ß = 0.10 [95% CI, 0.02 to 0.18]) and gyrification index (ß = 0.16 [95% CI, 0.07 to 0.25]); no SES measure was associated with cortical measures. Conclusions and Relevance: In this cohort study of UK infants, birth GA and SES were associated with neonatal brain morphology, but low GA had more widely distributed associations with neonatal brain structure than SES. Further work is warranted to elucidate the mechanisms underlying the association of both GA and SES with early brain development.


Assuntos
Doenças do Prematuro , Nascimento Prematuro , Lactente , Feminino , Recém-Nascido , Humanos , Masculino , Recém-Nascido Prematuro , Nascimento Prematuro/epidemiologia , Estudos de Coortes , Qualidade de Vida , Encéfalo/diagnóstico por imagem , Classe Social
2.
Neuroinformatics ; 17(4): 479-496, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30604083

RESUMO

The main challenge in analysing functional magnetic resonance imaging (fMRI) data from extended samples of subject (N > 100) is to extract as much relevant information as possible from big amounts of noisy data. When studying neurodegenerative diseases with resting-state fMRI, one of the objectives is to determine regions with abnormal background activity with respect to a healthy brain and this is often attained with comparative statistical models applied to single voxels or brain parcels within one or several functional networks. In this work, we propose a novel approach based on clustering and stochastic rank aggregation to identify parcels that exhibit a coherent behaviour in groups of subjects affected by the same disorder and apply it to default-mode network independent component maps from resting-state fMRI data sets. Brain voxels are partitioned into parcels through k-means clustering, then solutions are enhanced by means of consensus techniques. For each subject, clusters are ranked according to their median value and a stochastic rank aggregation method, TopKLists, is applied to combine the individual rankings within each class of subjects. For comparison, the same approach was tested on an anatomical parcellation. We found parcels for which the rankings were different among control subjects and subjects affected by Parkinson's disease and amyotrophic lateral sclerosis and found evidence in literature for the relevance of top ranked regions in default-mode brain activity. The proposed framework represents a valid method for the identification of functional neuromarkers from resting-state fMRI data, and it might therefore constitute a step forward in the development of fully automated data-driven techniques to support early diagnoses of neurodegenerative diseases.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Doenças Neurodegenerativas/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico/métodos , Análise por Conglomerados , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Descanso , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA