Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(5): 2578-2602, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38305696

RESUMO

Water is known for dissipating electrostatic charges, but it is also a universal agent of matter electrification, creating charged domains in any material contacting or containing it. This new role of water was discovered during the current century. It is proven in a fast-growing number of publications reporting direct experimental measurements of excess charge and electric potential. It is indirectly verified by its success in explaining surprising phenomena in chemical synthesis, electric power generation, metastability, and phase transition kinetics. Additionally, electrification by water is opening the way for developing green technologies that are fully compatible with the environment and have great potential to contribute to sustainability. Electrification by water shows that polyphasic matter is a charge mosaic, converging with the Maxwell-Wagner-Sillars effect, which was discovered one century ago but is still often ignored. Electrified sites in a real system are niches showing various local electrochemical potentials for the charged species. Thus, the electrified mosaics display variable chemical reactivity and mass transfer patterns. Water contributes to interfacial electrification from its singular structural, electric, mixing, adsorption, and absorption properties. A long list of previously unexpected consequences of interfacial electrification includes: "on-water" reactions of chemicals dispersed in water that defy current chemical wisdom; reactions in electrified water microdroplets that do not occur in bulk water, transforming the droplets in microreactors; and lowered surface tension of water, modifying wetting, spreading, adhesion, cohesion, and other properties of matter. Asymmetric capacitors charged by moisture and water are now promising alternative equipment for simultaneously producing electric power and green hydrogen, requiring only ambient thermal energy. Changing surface tension by interfacial electrification also modifies phase-change kinetics, eliminating metastability that is the root of catastrophic electric discharges and destructive explosions. It also changes crystal habits, producing needles and dendrites that shorten battery life. These recent findings derive from a single factor, water's ability to electrify matter, touching on the most relevant aspects of chemistry. They create tremendous scientific opportunities to understand the matter better, and a new chemistry based on electrified interfaces is now emerging.

2.
J Colloid Interface Sci ; 533: 216-226, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30165299

RESUMO

The development of self-healing materials opens perspectives to fabricate devices with unprecedented lifetimes and recyclability that can be integrated with flexible electronics. However, the timescale at which these materials operate remains an important challenge to overcome. This article describes the fast self-healing behavior of aluminum/iron polyphosphate metallo-gels and their hybrids with polyaniline and gives a detailed investigation of their electrical behaviors. The samples can be cut, molded and healed by manual handling. The rebuilding process is mediated by water uptake and was directly observed by environmental scanning electron microscopy. Metallo-gels with and without polyaniline can be mixed to give homogeneous samples, where the conducting polymer is uniformly distributed within the inorganic matrix. Cyclic voltammetry experiments showed that polyaniline behaves within the metallo-gel in the same manner as it does in aqueous electrolytes. Furthermore, polyaniline adds electronic conductivity to the originally ion-conducting polyphosphate metallo-gel, as demonstrated by impedance spectroscopy. The ionic and electronic conductivities are 1.3-1.7 × 10-2 S·cm-1 and 5.2 × 10-4 S·cm-1, respectively. Such properties result from the "free" and "bound" water within the hydrogel network and the dynamic nature of the aluminum-phosphate interactions within the supramolecular network. The features presented here make these materials good candidates to be used as moldable electroactive binders in carbon-based electrodes and in all-solid-state flexible separators for repairable electrochemical capacitors and batteries.

3.
Gen Dent ; 66(5): e12-e17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30188865

RESUMO

The aim of the present report was to detail the advantages of using 3-dimensional (3D) prototyping in the planning, modeling, and manufacturing of an immediate palatal obturator for a 62-year-old man who underwent a left total maxillectomy to remove a solid, multicystic ameloblastoma. The prosthesis provided favorable restoration of stomatognathic functions, including speech, swallowing, and mastication. The use of an immediate obturator prosthesis made with 3D technology is an important aid in the treatment of patients diagnosed with tumors in the head and neck region.


Assuntos
Ameloblastoma/cirurgia , Neoplasias Maxilares/cirurgia , Ameloblastoma/diagnóstico por imagem , Planejamento de Prótese Dentária , Humanos , Imageamento Tridimensional/métodos , Masculino , Maxila/diagnóstico por imagem , Maxila/cirurgia , Neoplasias Maxilares/diagnóstico por imagem , Pessoa de Meia-Idade , Obturadores Palatinos , Tomografia Computadorizada por Raios X
4.
Dent Mater ; 33(10): 1110-1126, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28779891

RESUMO

OBJECTIVE: Silver nanoparticles (AgNPs) have been extensively studied for their antimicrobial properties, which provide an extensive applicability in dentistry. Because of this increasing interest in AgNPs, the objective of this paper was to review their use in nanocomposites; implant coatings; pre-formulation with antimicrobial activity against cariogenic pathogens, periodontal biofilm, fungal pathogens and endodontic bacteria; and other applications such as treatment of oral cancer and local anesthesia. Recent achievements in the study of the mechanism of action and the most important toxicological aspects are also presented. METHODS: Systematic searches were carried out in Web of Science (ISI), Google, PubMed, SciFinder and EspaceNet databases with the keywords "silver nano* or AgNP*" and "dentist* or dental* or odontol*". RESULTS: A total of 155 peer-reviewed articles were reviewed. Most of them were published in the period of 2012-2017, demonstrating that this topic currently represents an important trend in dentistry research. In vitro studies reveal the excellent antimicrobial activity of AgNPs when associated with dental materials such as nanocomposites, acrylic resins, resin co-monomers, adhesives, intracanal medication, and implant coatings. Moreover, AgNPs were demonstrated to be interesting tools in the treatment of oral cancers due to their antitumor properties. SIGNIFICANCE: The literature indicates that AgNPs are a promising system with important features such as antimicrobial, anti-inflammatory and antitumor activity, and a potential carrier in sustained drug delivery. However, there are some aspects of the mechanisms of action of AgNPs, and some important toxicological aspects arising from the use of this system that must be completely elucidated.


Assuntos
Materiais Dentários , Nanopartículas Metálicas , Prata , Biofilmes , Odontologia , Humanos
5.
Braz. dent. j ; 28(4): 417-422, July-Aug. 2017. tab
Artigo em Inglês | LILACS | ID: biblio-888664

RESUMO

Abstract: The purpose of this study was to evaluate the antimicrobial properties of a new formulation containing silver nanoparticles, named Nano Silver Fluoride (NSF), to inhibit Streptococcus mutans biofilm formation on children's dental enamel. The variations in dental biofilm pH and in the Simplified-Oral-Hygiene-Index (OHI-S) also were evaluated after the treatment with NSF. This was a randomized, double-blind, crossover and prospective pilot clinical trial study in which 12 schoolchildren, aged between 7-8 years, had their dental enamel treated with two solutions: S1 - Nano Silver Fluoride and S2 - negative control (saline solution), in different experimental moments. The dental biofilm adhered to enamel treated with NSF had lower values of S. mutans viability (absorbance) and colony forming units (CFU) than the S0 (baseline) and S2. There was a statistically significant difference between the OHI-S mean values of S0 and S1. There were no differences between the biofilm pH (both before and after the use of the test substances) and among the different groups. These properties suggest that NSF has bactericidal effect against S. mutans biofilm and it may be used for clinical control and prevention of dental biofilm formation.


Resumo O objetivo do presente estudo foi avaliar as propriedades antimicrobianas de uma nova formulação composta por nanopartículas de prata, denominada nano silver fluoride (NSF), na inibição de biofilme de Streptococcus mutans sobre a superfície do esmalte dentário de crianças. Variações no pH do biofilme dental e nos valores do índice de Higiene Oral Simplificada (IHO-S) também foram avaliadas após o tratamento com NSF. Trata-se de um estudo piloto, randomizado, duplo cego, cruzado e prospectivo. A amostra foi composta por 12 crianças, de ambos os gêneros, com idades entre 7 e 8 anos, as quais utilizaram as duas soluções testes, S1- NSF e S2- controle negativo (solução salina). O biofilme dental tratado com NSF apresentou menores valores de viabilidade de S. mutans (absorbância) e de unidades formadoras de colônias (UFC) do que o biofilme baseline e o biofilme tratado com S2. Houve diferença estatisticamente significativa entre os valores médios de IHO-S dos grupos baseline e S1, com uma redução dos valores. Não houve qualquer variação nos valores de pH do biofilme dental, antes e depois do tratamento com S1 e S2 e entre os diferentes grupos. Estas propriedades sugerem que NSF possui efeito bactericida sobre o biofilme de S. mutans, podendo ser utilizado clinicamente para o controle e prevenção da formação do biofilme dentário.


Assuntos
Humanos , Masculino , Feminino , Criança , Biofilmes , Nanopartículas Metálicas/química , Prata/química , Streptococcus mutans/efeitos dos fármacos , Contagem de Colônia Microbiana , Estudos Cross-Over , Método Duplo-Cego , Concentração de Íons de Hidrogênio , Índice de Higiene Oral , Projetos Piloto , Estudos Prospectivos , Streptococcus mutans/fisiologia
6.
Int J Biol Macromol ; 93(Pt A): 896-903, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27642129

RESUMO

The present study aimed to evaluate the antimicrobial activity and cytotoxicity of colloidal chitosan - silver nanoparticle - fluoride nanocomposites (CChAgNpFNc), with different silver nanoparticle shapes and sizes. The syntheses of CChAgNpFNc were performed with silver nitrate added to a chitosan solution, addition of a sodium borohydride solution and solid sodium fluoride. Solution of ascorbic acid was added to synthesize larger silver nanoparticles. CChAgNpFNc obtained: S1- 100% spherical, 8.7±3.1nm; S2- 97% spherical, 15.0±7.9nm and 2.5% triangular, 22.2±9.5nm; S3- 77.3% spherical, 31.8±10.4nm, 15.9% triangular, 27.1±10.1nm and 6.8% elliptical, 33.2±7.8nm; and S4- 75.2% spherical, 43.2±14.3nm; 23.3% triangular 38.2±14.8nm, and 1.5% elliptical 38.4±11.6nm. The CChAgNpFNc showed antimicrobial activity against Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa and Candida albicans, by microdilution technique. The influence on the growth of microorganisms was evaluated using a fluorescence assay, and showed an increasing lag phase and a decreasing log phase. Cytotoxicity was investigated using Artemia salina and MTT assays. The S3 and S4 samples exhibited low cytotoxicity. The S1 and S2 samples inhibited murine macrophages and revealed lethal dose concentrations above 1000mg/mL that were classified as moderately toxic. Thus, CChAgNpFNc are potential options for the control of multiple-drug-resistant microorganisms and do not represent substantial risks to human health.


Assuntos
Antibacterianos/farmacologia , Quitosana/química , Fluoretos/farmacologia , Nanopartículas Metálicas/toxicidade , Nanocompostos/toxicidade , Animais , Antibacterianos/química , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral , Coloides , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fluoretos/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Camundongos , Testes de Sensibilidade Microbiana , Nanocompostos/química , Nanocompostos/ultraestrutura , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos , Células RAW 264.7 , Staphylococcus aureus/efeitos dos fármacos
7.
RFO UPF ; 18(3): 312-315, set.-dez. 2013.
Artigo em Inglês | LILACS-Express | LILACS | ID: lil-726479

RESUMO

Objective: to clarify the benefits related to the use of silver nanoparticles (AgNPs) in the prevention of dental caries in children, we compared the antibacterial pro-perties of silver nanoparticles, chlorhexidine, and silver diamine fluoride (SDF) to Streptococcus mutans. Mate-rials and method: to analyze the minimum inhibitory concentration (MIC) we used the spectrophotometric microdilution method (SMM), and turbidity. We also verified the minimum bactericidal concentration (MBC) of the target products. Analysis of variance (ANOVA) was used to compare MIC and MBC among the groups studied. Results: regarding antimicrobial proprieties, the tested substances showed effective bacteriostatic and bactericide activity. The silver nanoparticles had the lowest value of MIC against reference strains (ATCC 25175) (p < 0.05). In clinical strains, the MIC value of silver nanoparticles was comparable to that of chlorhe-xidine (p > 0.05), and lower than SDF (p < 0.05). Con-clusion: silver nanoparticles proved to have antimicro-bial activity against S. mutans, therefore, they may be an effective agent in the prevention of dental caries

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA