Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3875, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365924

RESUMO

ADP-ribosyltransferases PARP1 and PARP2 play a major role in DNA repair mechanism by detecting the DNA damage and inducing poly-ADP-ribosylation dependent chromatin relaxation and recruitment of repair proteins. Catalytic PARP inhibitors are used as anticancer drugs especially in the case of tumors arising from sensitizing mutations. Recently, a study showed that Histone PARylation Factor (HPF1) forms a joint active site with PARP1/2. The interaction of HPF1 with PARP1/2 alters the modification site from Aspartate/Glutamate to Serine, which has been shown to be a key ADP-ribosylation event in the context of DNA damage. Therefore, disruption of PARP1/2-HPF1 interaction could be an alternative strategy for drug development to block the PARP1/2 activity. In this study, we describe a FRET based high-throughput screening assay to screen inhibitor libraries against PARP-HPF1 interaction. We optimized the conditions for FRET signal and verified the interaction by competing the FRET pair in multiple ways. The assay is robust and easy to automate. Validatory screening showed the robust performance of the assay, and we discovered two compounds Dimethylacrylshikonin and Alkannin, with µM inhibition potency against PARP1/2-HPF1 interaction. The assay will facilitate the discovery of inhibitors against HPF1-PARP1/2 complex and to develop potentially new effective anticancer agents.


Assuntos
Antineoplásicos , Histonas , Inibidores de Poli(ADP-Ribose) Polimerases , Antineoplásicos/química , Antineoplásicos/farmacologia , Dano ao DNA , Reparo do DNA , Ensaios de Triagem em Larga Escala , Histonas/efeitos dos fármacos , Histonas/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli ADP Ribosilação , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
2.
J Med Chem ; 66(2): 1301-1320, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36598465

RESUMO

We report [1,2,4]triazolo[3,4-b]benzothiazole (TBT) as a new inhibitor scaffold, which competes with nicotinamide in the binding pocket of human poly- and mono-ADP-ribosylating enzymes. The binding mode was studied through analogues and cocrystal structures with TNKS2, PARP2, PARP14, and PARP15. Based on the substitution pattern, we were able to identify 3-amino derivatives 21 (OUL243) and 27 (OUL232) as inhibitors of mono-ARTs PARP7, PARP10, PARP11, PARP12, PARP14, and PARP15 at nM potencies, with 27 being the most potent PARP10 inhibitor described to date (IC50 of 7.8 nM) and the first PARP12 inhibitor ever reported. On the contrary, hydroxy derivative 16 (OUL245) inhibits poly-ARTs with a selectivity toward PARP2. The scaffold does not possess inherent cell toxicity, and the inhibitors can enter cells and engage with the target protein. This, together with favorable ADME properties, demonstrates the potential of TBT scaffold for future drug development efforts toward selective inhibitors against specific enzymes.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Tanquirases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Niacinamida/farmacologia , Desenvolvimento de Medicamentos , Benzotiazóis/farmacologia , Poli(ADP-Ribose) Polimerases , Proteínas Proto-Oncogênicas/metabolismo
3.
Eur J Med Chem ; 237: 114362, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500474

RESUMO

While human poly-ADP-ribose chain generating poly-ARTs, PARP1 and 2 and TNKS1 and 2, have been widely characterized, less is known on the pathophysiological roles of the mono-ADP-ribosylating mono-ARTs, partly due to the lack of selective inhibitors. In this context, we have focused on the development of inhibitors for the mono-ART PARP10, whose overexpression is known to induce cell death. Starting from OUL35 (1) and its 4-(benzyloxy)benzamidic derivative (2) we herein report the design and synthesis of new analogues from which the cyclobutyl derivative 3c rescued cells most efficiently from PARP10 induced apoptosis. Most importantly, we also identified 2,3-dihydrophthalazine-1,4-dione as a new suitable nicotinamide mimicking PARP10 inhibitor scaffold. When it was functionalized with cycloalkyl (8a-c), o-fluorophenyl (8h), and thiophene (8l) rings, IC50 values in the 130-160 nM range were obtained, making them the most potent PARP10 inhibitors reported to date. These compounds also inhibited PARP15 with low micromolar IC50s, but none of the other tested poly- and mono-ARTs, thus emerging as dual mono-ART inhibitors. Compounds 8a, 8h and 8l were also able to enter cells and rescue cells from apoptosis. Our work sheds more light on inhibitor development against mono-ARTs and identifies chemical probes to study the cellular roles of PARP10 and PARP15.


Assuntos
ADP Ribose Transferases , Poli(ADP-Ribose) Polimerases , Apoptose , Morte Celular , Humanos , Luminol/análogos & derivados , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas
4.
STAR Protoc ; 3(1): 101147, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35141567

RESUMO

Here, we describe a protocol to set up a screening assay for ADP-ribosyl binding proteins including proteins that possess O-glycosidase or N-glycosidase activities. The FRET-based assay measures the interaction of any ADP-ribosyl binding protein fused to CFP with a cysteine-ADP-ribosylated GAP-tag fused to YFP. Recombinant PtxS1 and PARP2 are used to mono-ADP-ribosylate and poly-ADP-ribosylate the GAP-tag. The protocol does not require specialized compounds or substrates, making it accessible and easy to adapt in any laboratory or for other proteins of interest. For complete details on the use and execution of this profile, please refer to Sowa et al. (2021).


Assuntos
Bioensaio , Proteínas , Difosfato de Adenosina , Glicosídeo Hidrolases
5.
Cancer Res Commun ; 2(4): 233-245, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-36873622

RESUMO

The catalytic enzymes tankyrase 1 and 2 (TNKS1/2) alter protein turnover by poly-ADP-ribosylating target proteins, which earmark them for degradation by the ubiquitin-proteasomal system. Prominent targets of the catalytic activity of TNKS1/2 include AXIN proteins, resulting in TNKS1/2 being attractive biotargets for addressing of oncogenic WNT/ß-catenin signaling. Although several potent small molecules have been developed to inhibit TNKS1/2, there are currently no TNKS1/2 inhibitors available in clinical practice. The development of tankyrase inhibitors has mainly been disadvantaged by concerns over biotarget-dependent intestinal toxicity and a deficient therapeutic window. Here we show that the novel, potent, and selective 1,2,4-triazole-based TNKS1/2 inhibitor OM-153 reduces WNT/ß-catenin signaling and tumor progression in COLO 320DM colon carcinoma xenografts upon oral administration of 0.33-10 mg/kg twice daily. In addition, OM-153 potentiates anti-programmed cell death protein 1 (anti-PD-1) immune checkpoint inhibition and antitumor effect in a B16-F10 mouse melanoma model. A 28-day repeated dose mouse toxicity study documents body weight loss, intestinal damage, and tubular damage in the kidney after oral-twice daily administration of 100 mg/kg. In contrast, mice treated oral-twice daily with 10 mg/kg show an intact intestinal architecture and no atypical histopathologic changes in other organs. In addition, clinical biochemistry and hematologic analyses do not identify changes indicating substantial toxicity. The results demonstrate OM-153-mediated antitumor effects and a therapeutic window in a colon carcinoma mouse model ranging from 0.33 to at least 10 mg/kg, and provide a framework for using OM-153 for further preclinical evaluations. Significance: This study uncovers the effectiveness and therapeutic window for a novel tankyrase inhibitor in mouse tumor models.


Assuntos
Carcinoma , Neoplasias do Colo , Tanquirases , Humanos , Camundongos , Animais , beta Catenina/química , Neoplasias do Colo/tratamento farmacológico , Via de Sinalização Wnt
6.
J Med Chem ; 64(24): 17936-17949, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34878777

RESUMO

Tankyrase 1 and 2 (TNKS1/2) catalyze post-translational modification by poly-ADP-ribosylation of a plethora of target proteins. In this function, TNKS1/2 also impact the WNT/ß-catenin and Hippo signaling pathways that are involved in numerous human disease conditions including cancer. Targeting TNKS1/2 with small-molecule inhibitors shows promising potential to modulate the involved pathways, thereby potentiating disease intervention. Based on our 1,2,4-triazole-based lead compound 1 (OM-1700), further structure-activity relationship analyses of East-, South- and West-single-point alterations and hybrids identified compound 24 (OM-153). Compound 24 showed picomolar IC50 inhibition in a cellular (HEK293) WNT/ß-catenin signaling reporter assay, no off-target liabilities, overall favorable absorption, distribution, metabolism, and excretion (ADME) properties, and an improved pharmacokinetic profile in mice. Moreover, treatment with compound 24 induced dose-dependent biomarker engagement and reduced cell growth in the colon cancer cell line COLO 320DM.


Assuntos
Desenvolvimento de Medicamentos , Inibidores Enzimáticos/farmacologia , Tanquirases/antagonistas & inibidores , Triazóis/farmacologia , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Via de Sinalização Hippo/efeitos dos fármacos , Humanos , Camundongos , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacocinética , Via de Sinalização Wnt/efeitos dos fármacos
7.
Cell Rep Methods ; 1(8): 100121, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34786571

RESUMO

Proteins interacting with ADP-ribosyl groups are often involved in disease-related pathways or viral infections, making them attractive drug targets. We present a robust and accessible assay applicable to both hydrolyzing or non-hydrolyzing binders of mono- and poly-ADP-ribosyl groups. This technology relies on a C-terminal tag based on a Gi protein alpha subunit peptide (GAP), which allows for site-specific introduction of cysteine-linked mono- and poly-ADP-ribosyl groups or analogs. By fusing the GAP-tag and ADP-ribosyl binders to fluorescent proteins, we generate robust FRET partners and confirm the interaction with 22 known ADP-ribosyl binders. The applicability for high-throughput screening of inhibitors is demonstrated with the SARS-CoV-2 nsp3 macrodomain, for which we identify suramin as a moderate-affinity yet non-specific inhibitor. High-affinity ADP-ribosyl binders fused to nanoluciferase complement this technology, enabling simple blot-based detection of ADP-ribosylated proteins. All these tools can be produced in Escherichia coli and will help in ADP-ribosylation research and drug discovery.


Assuntos
COVID-19 , Proteínas de Transporte , Humanos , Proteínas de Transporte/metabolismo , SARS-CoV-2/genética , Proteínas/metabolismo , ADP-Ribosilação
8.
Bioorg Med Chem ; 52: 116511, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34801828

RESUMO

The scaffold of TIQ-A, a previously known inhibitor of human poly-ADP-ribosyltransferase PARP1, was utilized to develop inhibitors against human mono-ADP-ribosyltransferases through structure-guided design and activity profiling. By supplementing the TIQ-A scaffold with small structural changes, based on a PARP10 inhibitor OUL35, selectivity changed from poly-ADP-ribosyltransferases towards mono-ADP-ribosyltransferases. Binding modes of analogs were experimentally verified by determining complex crystal structures with mono-ADP-ribosyltransferase PARP15 and with poly-ADP-ribosyltransferase TNKS2. The best analogs of the study achieved 10-20-fold selectivity towards mono-ADP-ribosyltransferases PARP10 and PARP15 while maintaining micromolar potencies. The work demonstrates a route to differentiate compound selectivity between mono- and poly-ribosyltransferases of the human ARTD family.


Assuntos
ADP Ribose Transferases/antagonistas & inibidores , Isoquinolinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Tiofenos/farmacologia , ADP Ribose Transferases/metabolismo , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Isoquinolinas/síntese química , Isoquinolinas/química , Modelos Moleculares , Estrutura Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química
9.
SLAS Discov ; 26(1): 67-76, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32527186

RESUMO

ADP-ribosylation is a post-translational modification involved in the regulation of many vital cellular processes. This posttranslational modification is carried out by ADP-ribosyltransferases converting ß-NAD+ into nicotinamide and a protein-linked ADP-ribosyl group or a chain of PAR. The reverse reaction, release of ADP-ribose from the acceptor molecule, is catalyzed by ADP-ribosylhydrolases. Several hydrolases contain a macrodomain fold, and activities of human macrodomain protein modules vary from reading or erasing mono- and poly-ADP-ribosylation. Macrodomains have been linked to diseases such as cancer, making them potential drug targets. Discovery of inhibitors requires robust biochemical tools mostly lacking for hydrolases, and here we describe an inhibitor screening assay against mono-ADP-ribosylhydrolyzing enzymes. The activity-based assay uses an α-NAD+, anomer of ß-NAD+, which is accepted as a substrate by MacroD1, MacroD2, and ARH3 due to its resemblance to the protein-linked ADP-ribose. The amount of α-NAD+ present after hydrolysis is measured by chemically converting it on a microtiter plate to a fluorescent compound. We optimized the assay for MacroD2 and performed a proof-of-concept compound screening. Three compounds were identified as screening hits with micromolar potency. However, further characterization of the compounds identified them as protein destabilizers, excluding further follow-up studies. Validation and screening demonstrated the usability of the in vitro assay for MacroD2, and we also demonstrate the applicability of the assay as a tool for other human ADP-ribosylhydrolases.


Assuntos
Bioensaio/métodos , Hidrolases de Éster Carboxílico/metabolismo , ADP-Ribosilação , Hidrolases de Éster Carboxílico/química , Ativação Enzimática , Humanos , NAD/metabolismo , Processamento de Proteína Pós-Traducional
10.
Sci Rep ; 10(1): 12357, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704068

RESUMO

Tankyrases catalyse poly-ADP-ribosylation of their binding partners and the modification serves as a signal for the subsequent proteasomal degradation of these proteins. Tankyrases thereby regulate the turnover of many proteins involved in multiple and diverse cellular processes, such as mitotic spindle formation, telomere homeostasis and Wnt/ß-catenin signalling. In recent years, tankyrases have become attractive targets for the development of inhibitors as potential therapeutics against cancer and fibrosis. Further, it has become clear that tankyrases are not only enzymes, but also act as scaffolding proteins forming large cellular signalling complexes. While many potent and selective tankyrase inhibitors of the poly-ADP-ribosylation function exist, the inhibition of tankyrase scaffolding functions remains scarcely explored. In this work we present a robust, simple and cost-effective high-throughput screening platform based on FRET for the discovery of small molecule probes targeting the protein-protein interactions of tankyrases. Validatory screening with the platform led to the identification of two compounds with modest binding affinity to the tankyrase 2 ARC4 domain, demonstrating the applicability of this approach. The platform will facilitate identification of small molecules binding to tankyrase ARC or SAM domains and help to advance a structure-guided development of improved chemical probes targeting tankyrase oligomerization and substrate protein interactions.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Multimerização Proteica , Tanquirases/química , Humanos , Domínios Proteicos
11.
J Med Chem ; 63(13): 6834-6846, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32511917

RESUMO

Tankyrases 1 and 2 are central biotargets in the WNT/ß-catenin signaling and Hippo signaling pathways. We have previously developed tankyrase inhibitors bearing a 1,2,4-triazole moiety and binding predominantly to the adenosine binding site of the tankyrase catalytic domain. Here we describe a systematic structure-guided lead optimization approach of these tankyrase inhibitors. The central 1,2,4-triazole template and trans-cyclobutyl linker of the lead compound 1 were left unchanged, while side-group East, West, and South moieties were altered by introducing different building blocks defined as point mutations. The systematic study provided a novel series of compounds reaching picomolar IC50 inhibition in WNT/ß-catenin signaling cellular reporter assay. The novel optimized lead 13 resolves previous atropisomerism, solubility, and Caco-2 efflux liabilities. 13 shows a favorable ADME profile, including improved Caco-2 permeability and oral bioavailability in mice, and exhibits antiproliferative efficacy in the colon cancer cell line COLO 320DM in vitro.


Assuntos
Desenho de Fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Tanquirases/antagonistas & inibidores , Triazóis/química , Triazóis/farmacologia , Animais , Disponibilidade Biológica , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacocinética , Solubilidade , Triazóis/farmacocinética
12.
Nanoscale ; 10(35): 16857-16867, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30168565

RESUMO

Intrinsically disordered proteins (IDPs) lack a tertiary structure. Amyloidogenic IDPs (aIDPs) in particular have attracted great interest due to their implication in several devastating diseases as well as in critical biological functions. However, the conformational changes that trigger amyloid formation in aIDPs are largely unknown. aIDPs' conformational polymorphism at the monomer level encumbers their study using bulk techniques. Single-molecule techniques like atomic force microscopy-based single-molecule force spectroscopy represent a promising approach and a "carrier-guest" strategy, in which the protein of interest is mechanically protected, was developed to overcome the spurious signals from the noisy proximal region. However, since the carrier and single-molecule markers have similar mechanostabilities, their signals can intermingle in the force-extension recordings, making peak selection and analysis very laborious, cumbersome and prone to error for the non-expert. Here we have developed a new carrier, the c8C module from the CipC scaffoldin, with a higher mechanostability so that the signals from the protected protein will appear at the end of the recordings. This assures an accurate, more efficient and expert-independent analysis, simplifying both the selection and analysis of the single-molecule data. Furthermore, this modular design can be integrated into any SMFS polyprotein-based vector, thus constituting a useful utensil in the growing toolbox of protein nanomechanics.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , Proteínas de Bactérias/química , Proteínas de Transporte/química , Dicroísmo Circular , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Nanotecnologia , Ressonância Magnética Nuclear Biomolecular
13.
Structure ; 24(4): 606-616, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27021163

RESUMO

The titin I27 module from human cardiac titin has become a standard in protein nanomechanics. A proline-scanning study of its mechanical clamp found three mechanically hypomorphic mutants and a paradoxically hypermorphic mutant (I27Y9P). Both types of mutants have been commonly used as substrates of several protein unfoldase machineries in studies relating protein mechanostability to translocation or degradation rates. Using single-molecule force spectroscopy based on atomic force microscopy, polyprotein engineering, and steered molecular dynamics simulations, we show that, unexpectedly, the mechanostability of the Y9P variant is comparable to the wild type. Furthermore, the NMR analysis of homomeric polyproteins of this variant suggests that these constructs may induce slight structural perturbations in the monomer, which may explain some minor differences in this variant's properties; namely the abolishment of the mechanical unfolding intermediate and a reduced thermal stability. Our results clarify a previously reported paradoxical result in protein nanomechanics and contribute to refining our toolbox for understanding the unfolding mechanism used by translocases and degradation machines.


Assuntos
Conectina/química , Conectina/genética , Variação Genética , Poliproteínas/metabolismo , Prolina/genética , Tirosina/genética , Conectina/metabolismo , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Desdobramento de Proteína , Imagem Individual de Molécula
14.
Proteins ; 82(5): 717-26, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24123195

RESUMO

We provide theoretical tests of a novel experimental technique to determine mechanostability of proteins based on stretching a mechanically protected protein by single-molecule force spectroscopy. This technique involves stretching a homogeneous or heterogeneous chain of reference proteins (single-molecule markers) in which one of them acts as host to the guest protein under study. The guest protein is grafted into the host through genetic engineering. It is expected that unraveling of the host precedes the unraveling of the guest removing ambiguities in the reading of the force-extension patterns of the guest protein. We study examples of such systems within a coarse-grained structure-based model. We consider systems with various ratios of mechanostability for the host and guest molecules and compare them to experimental results involving cohesin I as the guest molecule. For a comparison, we also study the force-displacement patterns in proteins that are linked in a serial fashion. We find that the mechanostability of the guest is similar to that of the isolated or serially linked protein. We also demonstrate that the ideal configuration of this strategy would be one in which the host is much more mechanostable than the single-molecule markers. We finally show that it is troublesome to use the highly stable cystine knot proteins as a host to graft a guest in stretching studies because this would involve a cleaving procedure.


Assuntos
Modelos Moleculares , Nanoestruturas/química , Proteínas/química , Fenômenos Biomecânicos , Cistina/química , Estrutura Terciária de Proteína
15.
PLoS Biol ; 10(5): e1001335, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666178

RESUMO

Amyloidogenic neurodegenerative diseases are incurable conditions with high social impact that are typically caused by specific, largely disordered proteins. However, the underlying molecular mechanism remains elusive to established techniques. A favored hypothesis postulates that a critical conformational change in the monomer (an ideal therapeutic target) in these "neurotoxic proteins" triggers the pathogenic cascade. We use force spectroscopy and a novel methodology for unequivocal single-molecule identification to demonstrate a rich conformational polymorphism in the monomer of four representative neurotoxic proteins. This polymorphism strongly correlates with amyloidogenesis and neurotoxicity: it is absent in a fibrillization-incompetent mutant, favored by familial-disease mutations and diminished by a surprisingly promiscuous inhibitor of the critical monomeric ß-conformational change, neurotoxicity, and neurodegeneration. Hence, we postulate that specific mechanostable conformers are the cause of these diseases, representing important new early-diagnostic and therapeutic targets. The demonstrated ability to inhibit the conformational heterogeneity of these proteins by a single pharmacological agent reveals common features in the monomer and suggests a common pathway to diagnose, prevent, halt, or reverse multiple neurodegenerative diseases.


Assuntos
Proteínas Amiloidogênicas/química , Doenças Neurodegenerativas/patologia , Neurotoxinas/química , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Animais , Fenômenos Biomecânicos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Clonagem Molecular , Humanos , Dados de Sequência Molecular , Nanotecnologia , Nefelometria e Turbidimetria , Doenças Neurodegenerativas/genética , Neurotoxinas/genética , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Plasmídeos/química , Plasmídeos/genética , Poliproteínas/química , Estabilidade Proteica , Estrutura Secundária de Proteína , Desdobramento de Proteína , Ratos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Análise Espectral/métodos , Termodinâmica , Proteína 2 Associada à Membrana da Vesícula/química , Proteína 2 Associada à Membrana da Vesícula/genética , alfa-Sinucleína/química , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA