Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Viruses ; 15(5)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37243184

RESUMO

African swine fever virus (ASFV) encodes more than 150 proteins, most of them of unknown function. We used a high-throughput proteomic analysis to elucidate the interactome of four ASFV proteins, which potentially mediate a critical step of the infection cycle, the fusion and endosomal exit of the virions. Using affinity purification and mass spectrometry, we were able to identify potential interacting partners for those ASFV proteins P34, E199L, MGF360-15R and E248R. Representative molecular pathways for these proteins were intracellular and Golgi vesicle transport, endoplasmic reticulum organization, lipid biosynthesis, and cholesterol metabolism. Rab geranyl geranylation emerged as a significant hit, and also Rab proteins, which are crucial regulators of the endocytic pathway and interactors of both p34 and E199L. Rab proteins co-ordinate a tight regulation of the endocytic pathway that is necessary for ASFV infection. Moreover, several interactors were proteins involved in the molecular exchange at ER membrane contacts. These ASFV fusion proteins shared interacting partners, suggesting potential common functions. Membrane trafficking and lipid metabolism were important categories, as we found significant interactions with several enzymes of the lipid metabolism. These targets were confirmed using specific inhibitors with antiviral effect in cell lines and macrophages.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/fisiologia , Proteínas Virais de Fusão/metabolismo , Proteômica , Linhagem Celular
2.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408808

RESUMO

Microtubule targeting agents (MTAs) have been exploited mainly as anti-cancer drugs because of their impact on cellular division and angiogenesis. Additionally, microtubules (MTs) are key structures for intracellular transport, which is frequently hijacked during viral infection. We have analyzed the antiviral activity of clinically used MTAs in the infection of DNA and RNA viruses, including SARS-CoV-2, to find that MT destabilizer agents show a higher impact than stabilizers in the viral infections tested, and FDA-approved anti-helminthic benzimidazoles were among the most active compounds. In order to understand the reasons for the observed antiviral activity, we studied the impact of these compounds in motor proteins-mediated intracellular transport. To do so, we used labeled peptide tools, finding that clinically available MTAs impaired the movement linked to MT motors in living cells. However, their effect on viral infection lacked a clear correlation to their effect in motor-mediated transport, denoting the complex use of the cytoskeleton by viruses. Finally, we further delved into the molecular mechanism of action of Mebendazole by combining biochemical and structural studies to obtain crystallographic high-resolution information of the Mebendazole-tubulin complex, which provided insights into the mechanisms of differential toxicity between helminths and mammalians.


Assuntos
Tratamento Farmacológico da COVID-19 , Mebendazol , Animais , Antivirais/farmacologia , Mamíferos , Mebendazol/farmacologia , Microtúbulos , SARS-CoV-2 , Tubulina (Proteína)
3.
Antiviral Res ; 186: 105011, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33428961

RESUMO

Despite the efforts to develop new treatments against Ebola virus (EBOV) there is currently no antiviral drug licensed to treat patients with Ebola virus disease (EVD). Therefore, there is still an urgent need to find new drugs to fight against EBOV. In order to do this, a virtual screening was done on the druggable interaction between the EBOV glycoprotein (GP) and the host receptor NPC1 with a subsequent selection of compounds for further validation. This screening led to the identification of new small organic molecules with potent inhibitory action against EBOV infection using lentiviral EBOV-GP-pseudotype viruses. Moreover, some of these compounds have shown their ability to interfere with the intracellular cholesterol transport receptor NPC1 using an ELISA-based assay. These preliminary results pave the way to hit to lead optimization programs that lead to successful candidates.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas/métodos , Proteína C1 de Niemann-Pick/metabolismo , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Chlorocebus aethiops , Células HEK293 , Células HeLa , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Células Vero
4.
Genes (Basel) ; 11(10)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007801

RESUMO

Highly sensitive next-generation sequencing (NGS) platforms applied to preimplantation genetic testing for aneuploidy (PGT-A) allow the classification of mosaicism in trophectoderm biopsies. However, the incidence of mosaicism reported by these tests can be affected by a wide number of analytical, biological, and clinical factors. With the use of a proprietary algorithm for automated diagnosis of aneuploidy and mosaicism, we retrospectively analyzed a large series of 115,368 trophectoderm biopsies from 27,436 PGT-A cycles to determine whether certain biological factors and in vitro fertilization (IVF) practices influence the incidence of overall aneuploidy, whole uniform aneuploidy, mosaicism, and TE biopsies with only segmental aneuploidy. Older female and male patients showed higher rates of high-mosaic degree and whole uniform aneuploidies and severe oligozoospermic patients had higher rates of mosaicism and only segmental aneuploidies. Logistic regression analysis identified a positive effect of female age but a negative effect of embryo vitrification on the incidence of overall aneuploid embryos. Female age increased whole uniform aneuploidy rates but decreased only segmental aneuploidy and mosaicism, mainly low-mosaics. Conversely, higher ovarian response decreased whole uniform aneuploidy rates but increased only segmental aneuploidies. Finally, embryo vitrification decreased whole uniform aneuploidy rates but increased mosaicism, mainly low-mosaics, compared to PGT-A cycles with fresh oocytes. These results could be useful for clinician's management of the IVF cycles.


Assuntos
Aneuploidia , Fertilização in vitro , Testes Genéticos , Mosaicismo , Diagnóstico Pré-Implantação , Adulto , Biópsia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Incidência , Masculino , Idade Materna , Idade Paterna , Estudos Retrospectivos , Contagem de Espermatozoides , Trofoblastos
5.
Ups J Med Sci ; 125(1): 19-29, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31809668

RESUMO

Background: An antibody panel is needed to definitively differentiate between adenocarcinoma (AC) and squamous cell carcinoma (SCC) in order to meet more stringent requirements for the histologic classification of lung cancers. Staining of desmosomal plaque-related proteins may be useful in the diagnosis of lung SCC.Materials and methods: We compared the usefulness of six conventional (CK5/6, p40, p63, CK7, TTF1, and Napsin A) and three novel (PKP1, KRT15, and DSG3) markers to distinguish between lung SCC and AC in 85 small biopsy specimens (41 ACs and 44 SCCs). Correlations were examined between expression of the markers and patients' histologic and clinical data.Results: The specificity for SCC of membrane staining for PKP1, KRT15, and DSG3 was 97.4%, 94.6%, and 100%, respectively, and it was 100% when the markers were used together and in combination with the conventional markers (AUCs of 0.7619 for Panel 1 SCC, 0.7375 for Panel 2 SCC, 0.8552 for Panel 1 AC, and 0.8088 for Panel 2 AC). In a stepwise multivariate logistic regression model, the combination of CK5/6, p63, and PKP1 in membrane was the optimal panel to differentiate between SCC and AC, with a percentage correct classification of 96.2% overall (94.6% of ACs and 97.6% of SCCs). PKP1 and DSG3 are related to the prognosis.Conclusions: PKP1, KRT15, and DSG3 are highly specific for SCC, but they were more useful to differentiate between SCC and AC when used together and in combination with conventional markers. PKP1 and DSG3 expressions may have prognostic value.


Assuntos
Adenocarcinoma/diagnóstico , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Desmossomos/metabolismo , Neoplasias Pulmonares/diagnóstico , Adenocarcinoma/metabolismo , Carcinoma de Células Escamosas/metabolismo , Desmogleína 3/metabolismo , Diagnóstico Diferencial , Feminino , Humanos , Imuno-Histoquímica , Queratina-15/metabolismo , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Placofilinas/metabolismo , Prognóstico , Sensibilidade e Especificidade
6.
Biol Reprod ; 101(6): 1083-1090, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-30721942

RESUMO

We review here the evolution in the field of embryo aneuploidy testing over the last 20 years, from the analysis of a subset of chromosomes by fluorescence in situ hybridisation to the transition toward a more comprehensive analysis of all 24 chromosomes. This current comprehensive aneuploidy testing most commonly employs next-generation sequencing (NGS). We present our experience in over 130 000 embryo biopsies using this technology. The incidence of aneuploidy was lower in trophectoderm biopsies compared to cleavage-stage biopsies. We also confirmed by NGS that embryo aneuploidy rates increased with increasing maternal age, mostly attributable to an increase in complex aneuploid embryos. In contrast, the number of MII oocytes retrieved or the use of oocyte vitrification did not affect aneuploidy rates. Similarly, neither maternal age, oocyte number, nor oocyte vitrification affected the incidence of mosaicism. Analysis of clinical outcomes, indications, and potential benefits of embryo aneuploidy testing revealed advanced maternal age as the most favored group, with some evidence of improved delivery rate per transfer as well as decreased miscarriage rates and time to pregnancy. Other indications are: recurrent miscarriage, repetitive implantation failure, severe male factor, previous trisomic pregnancy, and good prognosis patients mainly undergoing single embryo transfer, with the latter indication used to reduce the occurrence of multiple pregnancies without compromising cycle outcome. In conclusion, NGS has become the most appropriate technology for aneuploidy testing in trophectoderm biopsies, with accurate results, high throughput, and cost efficiency. This technology can be also applied to the analysis of the embryonic cell free DNA released to the culture media at blastocyst stage. This is a promising approach towards a non-invasive preimplantation genetic testing of aneuploidy.


Assuntos
Aneuploidia , Análise Citogenética/métodos , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Diagnóstico Pré-Implantação/métodos , Blastocisto/química , Blastocisto/citologia , Ácidos Nucleicos Livres/análise , Ácidos Nucleicos Livres/genética , Análise Citogenética/tendências , Transferência Embrionária , Feminino , Testes Genéticos/tendências , Humanos , Masculino , Mosaicismo , Teste Pré-Natal não Invasivo/métodos , Teste Pré-Natal não Invasivo/tendências , Medicina de Precisão , Gravidez , Diagnóstico Pré-Implantação/tendências , Fatores de Risco , Fatores de Tempo
7.
J Nanobiotechnology ; 16(1): 33, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29602307

RESUMO

BACKGROUND: Dynein is a cytoskeletal molecular motor protein that transports cellular cargoes along microtubules. Biomimetic synthetic peptides designed to bind dynein have been shown to acquire dynamic properties such as cell accumulation and active intra- and inter-cellular motion through cell-to-cell contacts and projections to distant cells. On the basis of these properties dynein-binding peptides could be used to functionalize nanoparticles for drug delivery applications. RESULTS: Here, we show that gold nanoparticles modified with dynein-binding delivery sequences become mobile, powered by molecular motor proteins. Modified nanoparticles showed dynamic properties, such as travelling the cytosol, crossing intracellular barriers and shuttling the nuclear membrane. Furthermore, nanoparticles were transported from one cell to another through cell-to-cell contacts and quickly spread to distant cells through cell projections. CONCLUSIONS: The capacity of these motor-bound nanoparticles to spread to many cells and increasing cellular retention, thus avoiding losses and allowing lower dosage, could make them candidate carriers for drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Dineínas/metabolismo , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Sequência de Aminoácidos , Animais , Linhagem Celular , Ouro/química , Humanos , Nanopartículas Metálicas/ultraestrutura , Microtúbulos/metabolismo , Peso Molecular , Membrana Nuclear/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica
8.
Viruses ; 9(9)2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28841179

RESUMO

African swine fever virus (ASFV) is a large DNA virus that replicates predominantly in the cell cytoplasm and is the only member of the Asfarviridae family. The virus causes an acute haemorrhagic fever, African swine fever (ASF), in domestic pigs and wild boar resulting in the death of most infected animals. Apoptosis is induced at an early stage during virus entry or uncoating. However, ASFV encodes anti-apoptotic proteins which facilitate production of progeny virions. These anti-apoptotic proteins include A179L, a Bcl-2 family member; A224L, an inhibitor of apoptosis proteins (IAP) family member; EP153R a C-type lectin; and DP71L. The latter acts by inhibiting activation of the stress activated pro-apoptotic pathways pro-apoptotic pathways. The mechanisms by which these proteins act is summarised. ASF disease is characterised by massive apoptosis of uninfected lymphocytes which reduces the effectiveness of the immune response, contributing to virus pathogenesis. Mechanisms by which this apoptosis is induced are discussed.


Assuntos
Vírus da Febre Suína Africana/metabolismo , Vírus da Febre Suína Africana/patogenicidade , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Replicação Viral , Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/genética , Animais , Apoptose/imunologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Sequência de Bases , Replicação do DNA , Distrofina , Genes Virais/genética , Genes bcl-2 , Lectinas Tipo C/genética , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Alinhamento de Sequência , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/genética , Vírion/metabolismo , Internalização do Vírus
9.
Viruses ; 9(5)2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28489063

RESUMO

African swine fever (ASF) is a highly contagious viral disease of swine which causes high mortality, approaching 100%, in domestic pigs. ASF is caused by a large, double stranded DNA virus, ASF virus (ASFV), which replicates predominantly in the cytoplasm of macrophages and is the only member of the Asfarviridae family, genus Asfivirus. The natural hosts of this virus include wild suids and arthropod vectors of the Ornithodoros genus. The infection of ASFV in its reservoir hosts is usually asymptomatic and develops a persistent infection. In contrast, infection of domestic pigs leads to a lethal hemorrhagic fever for which there is no effective vaccine. Identification of ASFV genes involved in virulence and the characterization of mechanisms used by the virus to evade the immune response of the host are recognized as critical steps in the development of a vaccine. Moreover, the interplay of the viral products with host pathways, which are relevant for virus replication, provides the basic information needed for the identification of potential targets for the development of intervention strategies against this disease.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana/virologia , Suínos/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/fisiologia , Vírus da Febre Suína Africana/ultraestrutura , Animais , Apoptose , Autofagia , Reservatórios de Doenças/virologia , Estresse do Retículo Endoplasmático , Febres Hemorrágicas Virais , Interações Hospedeiro-Patógeno , Ornithodoros/virologia , Sus scrofa/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Virulência , Internalização do Vírus , Replicação Viral
10.
PLoS One ; 11(4): e0154366, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27116236

RESUMO

The interferon-induced transmembrane (IFITM) protein family is a group of antiviral restriction factors that impair flexibility and inhibit membrane fusion at the plasma or the endosomal membrane, restricting viral progression at entry. While IFITMs are widely known to inhibit several single-stranded RNA viruses, there are limited reports available regarding their effect in double-stranded DNA viruses. In this work, we have analyzed a possible antiviral function of IFITMs against a double stranded DNA virus, the African swine fever virus (ASFV). Infection with cell-adapted ASFV isolate Ba71V is IFN sensitive and it induces IFITMs expression. Interestingly, high levels of IFITMs caused a collapse of the endosomal pathway to the perinuclear area. Given that ASFV entry is strongly dependent on endocytosis, we investigated whether IFITM expression could impair viral infection. Expression of IFITM1, 2 and 3 reduced virus infectivity in Vero cells, with IFITM2 and IFITM3 having an impact on viral entry/uncoating. The role of IFITM2 in the inhibition of ASFV in Vero cells could be related to impaired endocytosis-mediated viral entry and alterations in the cholesterol efflux, suggesting that IFITM2 is acting at the late endosome, preventing the decapsidation stage of ASFV.


Assuntos
Vírus da Febre Suína Africana/patogenicidade , Antígenos de Diferenciação/metabolismo , Interferons/metabolismo , Proteínas de Membrana/metabolismo , Internalização do Vírus , Animais , Membrana Celular/metabolismo , Chlorocebus aethiops , Colesterol/metabolismo , Endocitose , Endossomos/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência , Vírus de RNA/metabolismo , RNA de Cadeia Dupla , Células Vero
11.
Virus Res ; 213: 219-223, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26732484

RESUMO

The modulation of the expression of caspases by viruses influences the cell survival of different cell types. Equine arteritis virus (EAV) induces apoptosis of BHK21 and Vero cell lines, but it is not known whether EAV induces apoptosis in RK13 cells, a common cell line routinely used in EAV diagnosis and research. In this study, we determined that caspase-3 expression was triggered after infection of RK13 cells with EAV in a time- and dose-dependent manner. We also detected caspase-8 and caspase-9 activation, indicating the stimulation of both extrinsic and intrinsic apoptosis pathways. Finally, we found caspase-12 activation, an indicator of endoplasmic reticulum stress-induced apoptosis. The variability observed in the apoptotic response in the different cell lines demonstrates that apoptosis depends on the distinctive sensitivity of each cell line used for investigation.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Células Epiteliais/fisiologia , Células Epiteliais/virologia , Equartevirus/crescimento & desenvolvimento , Animais , Caspase 3/análise , Caspase 8/análise , Caspase 9/análise , Linhagem Celular , Coelhos
12.
J Virol ; 90(3): 1534-43, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26608317

RESUMO

UNLABELLED: African swine fever virus (ASFV) is a major threat for porcine production that has been slowly spreading in Eastern Europe since its first appearance in the Caucasus in 2007. ASFV enters the cell by endocytosis and gains access to the cytosol to start replication from late endosomes and multivesicular bodies. Cholesterol associated with low-density lipoproteins entering the cell by endocytosis also follows a trafficking pathway similar to that of ASFV. Here we show that cholesterol plays an essential role in the establishment of infection as the virus traffics through the endocytic pathway. In contrast to the case for other DNA viruses, such as vaccinia virus or adenovirus 5, cholesterol efflux from endosomes is required for ASFV release/entry to the cytosol. Accumulation of cholesterol in endosomes impairs fusion, resulting in retention of virions inside endosomes. ASFV also remodels intracellular cholesterol by increasing its cellular uptake and redistributes free cholesterol to viral replication sites. Our analysis reveals that ASFV manipulates cholesterol dynamics to ensure an appropriate lipid flux to establish productive infection. IMPORTANCE: Since its appearance in the Caucasus in 2007, African swine fever (ASF) has been spreading westwards to neighboring European countries, threatening porcine production. Due to the lack of an effective vaccine, ASF control relies on early diagnosis and widespread culling of infected animals. We investigated early stages of ASFV infection to identify potential cellular targets for therapeutic intervention against ASF. The virus enters the cell by endocytosis, and soon thereafter, viral decapsidation occurs in the acid pH of late endosomes. We found that ASFV infection requires and reorganizes the cellular lipid cholesterol. ASFV requires cholesterol to exit the endosome to gain access to the cytoplasm to establish productive replication. Our results indicate that there is a differential requirement for cholesterol efflux for vaccinia virus or adenovirus 5 compared to ASFV.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Colesterol/metabolismo , Endossomos/metabolismo , Endossomos/virologia , Internalização do Vírus , Animais , Chlorocebus aethiops , Concentração de Íons de Hidrogênio , Análise do Fluxo Metabólico , Células Vero
13.
J Assist Reprod Genet ; 32(5): 839-48, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25779005

RESUMO

PURPOSE: To analyze the molecular cytogenetic data obtained from products of conception (POC) obtained by selective biopsy of first trimester miscarriages and to estimate the rate of chromosomal anomalies in miscarriages from pregnancies achieved by natural conception (NC) or by assisted reproductive technology (ART) interventions. METHODS: We used KaryoLite™ BoBs™ (PerkinElmer LAS, Wallac, Turku, Finland) technology to analyze 189 samples from ART or NC pregnancies. RESULTS: All POC were successfully evaluated. A higher incidence of chromosomal abnormalities was observed in POC after ART using the patient's own oocytes than from NC pregnancies (62.7% vs. 40.6%; p < 0.05). The lowest incidence of chromosomal abnormalities was observed in POCs ART using donor eggs from women younger than 35 years (12.8%). No statistical differences in the percentage of abnormal miscarriages were observed in correlation with sperm concentration: a sperm concentration less than 5 million/mL produced 75% abnormal results and a concentration higher than 5 million/mL produced 51%. CONCLUSIONS: POC analysis is essential to determine the cause of pregnancy loss. Using culture-independent molecular biology techniques to analyze POCs avoids limitations such as growth failure and reduces the time required for analysis. Selective biopsy of fetal tissue by hysteroembryoscopy avoids the risk of misdiagnosis due to maternal cell contamination. Our results show that maternal age, sperm quality, and ART-assisted pregnancies are risk factors for abnormal gestations.


Assuntos
Aborto Espontâneo/patologia , Aberrações Cromossômicas , Fertilização/genética , Fetoscopia/métodos , Histeroscopia/métodos , Infertilidade/terapia , Resultado da Gravidez , Técnicas de Reprodução Assistida/efeitos adversos , Aborto Espontâneo/etiologia , Adulto , Análise Citogenética , Feminino , Humanos , Masculino , Idade Materna , Gravidez , Primeiro Trimestre da Gravidez/genética , Contagem de Espermatozoides
14.
Virus Res ; 200: 45-55, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25662020

RESUMO

The main cellular target for African swine fever virus (ASFV) is the porcine macrophage. However, existing data about the early phases of infection were previously characterized in non-leukocyte cells such as Vero cells. Here, we report that ASFV enters the natural host cell using dynamin-dependent and clathrin-mediated endocytosis. This pathway is strongly pH-dependent during the first steps of infection in porcine macrophages. We investigated the effect of drugs inhibiting several endocytic pathways in macrophages and compared ASFV with vaccinia virus (VV), which apparently involves different entry pathways. The presence of cholesterol in cellular membranes was found to be essential for a productive ASFV infection while actin-dependent endocytosis and the participation of phosphoinositide-3-kinase (PI3K) activity were other cellular factors required in the process of viral entry. These findings improved our understanding of the ASFV interactions with macrophages that allow for successful viral replication.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Colesterol/metabolismo , Clatrina/metabolismo , Endocitose , Macrófagos/virologia , Febre Suína Africana/enzimologia , Febre Suína Africana/metabolismo , Febre Suína Africana/fisiopatologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Animais , Chlorocebus aethiops , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Suínos , Células Vero , Internalização do Vírus
15.
Biomed Res Int ; 2014: 590298, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24795887

RESUMO

The risk of fetal aneuploidies is usually estimated based on high resolution ultrasound combined with biochemical determination of criterion in maternal blood, with invasive procedures offered to the population at risk. The purpose of this study was to investigate the effectiveness of a new rapid aneuploidy screening test on amniotic fluid (AF) or chorionic villus (CV) samples based on BACs-on-Beads (BoBs) technology and to compare the results with classical karyotyping by Giemsa banding (G-banding) of cultured cells in metaphase as the gold standard technique. The prenatal-BoBs kit was used to study aneuploidies involving chromosomes 13, 18, 21, X, and Y as well as nine microdeletion syndromes in 321 AF and 43 CV samples. G-banding of metaphase cultured cells was performed concomitantly for all prenatal samples. A microarray-based comparative genomic hybridization (aCGH) was also carried out in a subset of samples. Prenatal-BoBs results were widely confirmed by classical karyotyping. Only six karyotype findings were not identified by Prenatal-BoBs, all of them due to the known limitations of the technique. In summary, the BACs-on-Beads technology was an accurate, robust, and efficient method for the rapid diagnosis of common aneuploidies and microdeletion syndromes in prenatal samples.


Assuntos
Aberrações Cromossômicas , Testes Genéticos/métodos , Diagnóstico Pré-Natal/métodos , Líquido Amniótico/química , Amostra da Vilosidade Coriônica , Hibridização Genômica Comparativa , Feminino , Humanos , Cariotipagem , Gravidez
16.
Biomed Res Int ; 2014: 517125, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24877108

RESUMO

The objective of this study was to evaluate the usefulness of comprehensive chromosome screening (CCS) using array comparative genomic hybridization (aCGH). The study included 1420 CCS cycles for recurrent miscarriage (n = 203); repetitive implantation failure (n = 188); severe male factor (n = 116); previous trisomic pregnancy (n = 33); and advanced maternal age (n = 880). CCS was performed in cycles with fresh oocytes and embryos (n = 774); mixed cycles with fresh and vitrified oocytes (n = 320); mixed cycles with fresh and vitrified day-2 embryos (n = 235); and mixed cycles with fresh and vitrified day-3 embryos (n = 91). Day-3 embryo biopsy was performed and analyzed by aCGH followed by day-5 embryo transfer. Consistent implantation (range: 40.5-54.2%) and pregnancy rates per transfer (range: 46.0-62.9%) were obtained for all the indications and independently of the origin of the oocytes or embryos. However, a lower delivery rate per cycle was achieved in women aged over 40 years (18.1%) due to the higher percentage of aneuploid embryos (85.3%) and lower number of cycles with at least one euploid embryo available per transfer (40.3%). We concluded that aneuploidy is one of the major factors which affect embryo implantation.


Assuntos
Aborto Habitual/genética , Hibridização Genômica Comparativa/instrumentação , Hibridização Genômica Comparativa/métodos , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Trissomia/genética , Aborto Habitual/patologia , Adulto , Transferência Embrionária , Embrião de Mamíferos/patologia , Feminino , Humanos , Masculino , Oócitos/patologia , Gravidez , Trissomia/patologia
17.
Fertil Steril ; 99(4): 1044-8, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23394777

RESUMO

OBJECTIVE: To review clinical outcomes after preimplantation genetic screening. Most methods of embryo viability assessment involve morphologic evaluation at different preimplantation developmental stages. A weak association between blastocyst morphology and aneuploidy has been described, supporting the basis for preimplantation genetic screening (PGS) for assessment of embryo viability. The expected improvement in reproductive outcome rates has been reached with the application of microarrays based on comparative genomic hybridization (CGH) in clinical routine PGS. DESIGN: Review of published studies and own unpublished data. SETTING: University-affiliated private institution. PATIENT(S): IVF patients undergoing PGS at different stages. INTERVENTION(S): PGS with polar body, cleavage-stage, and blastocyst biopsies. MAIN OUTCOME MEASURE(S): Aneuploidy, implantation, and pregnancy rates. RESULTS: The clinical outcome after analysis of all 24 chromosomes improved pregnancy and implantation rates for different indications to a higher degree than the previously available technology, fluorescence in situ hybridization (FISH), in which only a limited number of chromosomes could be analyzed. CONCLUSION(S): Most of the data regarding the controversy of day-3 biopsy come from FISH cycles, and the utility of day-3 biopsy with new array-CGH technology should be further evaluated through randomized controlled trials. The current trend is blastocyst biopsy with a fresh transfer or vitrification for transfer in a nonstimulated cycle.


Assuntos
Blastocisto/fisiologia , Hibridização Genômica Comparativa/métodos , Fertilização in vitro/métodos , Diagnóstico Pré-Implantação/métodos , Transferência Embrionária/métodos , Feminino , Humanos , Gravidez
18.
PLoS One ; 7(11): e48853, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133661

RESUMO

Here we analyzed the dependence of African swine fever virus (ASFV) infection on the integrity of the endosomal pathway. Using confocal immunofluorescence with antibodies against viral capsid proteins, we found colocalization of incoming viral particles with early endosomes (EE) during the first minutes of infection. Conversely, viral capsid protein was not detected in acidic late endosomal compartments, multivesicular bodies (MVBs), late endosomes (LEs) or lysosomes (LY). Using an antibody against a viral inner core protein, we found colocalization of viral cores with late compartments from 30 to 60 minutes postinfection. The absence of capsid protein staining in LEs and LYs suggested that virus desencapsidation would take place at the acid pH of these organelles. In fact, inhibitors of intraluminal acidification of endosomes caused retention of viral capsid staining virions in Rab7 expressing endosomes and more importantly, severely impaired subsequent viral protein production. Endosomal acidification in the first hour after virus entry was essential for successful infection but not thereafter. In addition, altering the balance of phosphoinositides (PIs) which are responsible of the maintenance of the endocytic pathway impaired ASFV infection. Early infection steps were dependent on the production of phosphatidylinositol 3-phosphate (PtdIns3P) which is involved in EE maturation and multivesicular body (MVB) biogenesis and on the interconversion of PtdIns3P to phosphatidylinositol 3, 5-biphosphate (PtdIns(3,5)P(2)). Likewise, GTPase Rab7 activity should remain intact, as well as processes related to LE compartment physiology, which are crucial during early infection. Our data demonstrate that the EE and LE compartments and the integrity of the endosomal maturation pathway orchestrated by Rab proteins and PIs play a central role during early stages of ASFV infection.


Assuntos
Vírus da Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , Endossomos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células COS , Capsídeo/metabolismo , Chlorocebus aethiops , Citoplasma/metabolismo , Endocitose , Concentração de Íons de Hidrogênio , Microscopia Confocal/métodos , Fosfatos de Fosfatidilinositol/química , Suínos , Células Vero , proteínas de unión al GTP Rab7
19.
PLoS One ; 7(11): e48466, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23155384

RESUMO

Flagellins evoke strong innate and adaptive immune responses. These proteins may play a key role as radioprotectors, exert antitumoral activity in certain types of tumor and reduce graft-versus-host disease in allogeneic hematopoietic stem cell transplant recipients. Notwithstanding, flagellins are highly immunogenic, and repeated use leads to their neutralization by systemic antibodies. This neutralization is not prevented by using functional deleted flagellins. These observations led us to explore the possibility of preventing initial neutralization by means of another functional flagellin that does not belong to common pathogenic bacteria but that has the capacity to activate TLR5. Here we characterized the functional capacity of the two-phase Marinobacter algicola (MA)-derived flagellins (F and FR) as systemic and mucosal adjuvants and compared their performance with that of Salmonella typhimurium (STF) flagellins (FljB and FliC). We also report for the first time on the in vitro and in vivo capacity of various flagellins to trigger TLR5 activation in the presence of species-specific anti-flagellin antibodies, the cross-neutralization mediated by these antibodies, and the sequential use of these flagellins for TLR5 activation. Our results showed that MA flagellins behave in a similar way to STF ones, inducing pro-inflammatory cytokines (IL8, CCL20, CCL2) and evoking a strong in vivo antibody response against a model epitope. More importantly, MA flagellins were fully functional, in vitro or in vivo, in the presence of a high concentration of neutralizing anti-flagellin STF antibodies, and STF flagellin was not inhibited by neutralizing anti-flagellin MA antibodies. The use of active flagellins from distinct bacteria could be a useful approach to prevent systemic neutralization of this group of adjuvants and to facilitate the rational design of flagellin-based vaccines and/or other therapeutic treatments (against ischemia, acute renal failure, tumors, ionizing radiations and also to improve the outcome of bone marrow transplants).


Assuntos
Flagelina/imunologia , Marinobacter/imunologia , Salmonella typhimurium/imunologia , Receptor 5 Toll-Like/metabolismo , Imunidade Adaptativa , Animais , Feminino , Flagelina/metabolismo , Marinobacter/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Salmonella typhimurium/metabolismo
20.
Virology ; 375(2): 561-72, 2008 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-18329683

RESUMO

Several large DNA viruses encode Bcl-2 protein homologues involved in the regulation of the cellular apoptosis cascade. This regulation often involves the interaction of these viral proteins with diverse cellular Bcl-2 family members. We have identified the specific interactions of A179L, an African swine fever virus (ASFV) Bcl-2 homologue, with the active forms of the porcine BH3-only Bid protein (truncated Bid p13 and p15). Transient expression of ASFV A179L gene in Vero cells prevented apoptosis induced by these active forms of Bid protein. Interestingly, A179L protein was able to interact, also with the main core Bcl-2 proapoptotic proteins Bax and Bak, and with several BH3-only proteins with selective binding restrictions for full length Bid and Noxa. These results suggest a fine regulation for A179L action in the suppression of apoptosis in infected cells which is essential for efficient virus replication.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/virologia , Proteínas Reguladoras de Apoptose/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Virais/fisiologia , Sequência de Aminoácidos , Animais , Apoptose/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Linhagem Celular , Regulação para Baixo , Genes bcl-2 , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA