Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 58(14): 9341-9350, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31241335

RESUMO

We have employed a range of ultrafast X-ray spectroscopies in an effort to characterize the lowest energy excited state of [Fe(dcpp)2]2+ (where dcpp is 2,6-(dicarboxypyridyl)pyridine). This compound exhibits an unusually short excited-state lifetime for a low-spin Fe(II) polypyridyl complex of 270 ps in a room-temperature fluid solution, raising questions as to whether the ligand-field strength of dcpp had pushed this system beyond the 5T2/3T1 crossing point and stabilizing the latter as the lowest energy excited state. Kα and Kß X-ray emission spectroscopies have been used to unambiguously determine the quintet spin multiplicity of the long-lived excited state, thereby establishing the 5T2 state as the lowest energy excited state of this compound. Geometric changes associated with the photoinduced ligand-field state conversion have also been monitored with extended X-ray absorption fine structure. The data show the typical average Fe-ligand bond length elongation of ∼0.18 Å for a 5T2 state and suggest a high anisotropy of the primary coordination sphere around the metal center in the excited 5T2 state, in stark contrast to the nearly perfect octahedral symmetry that characterizes the low-spin 1A1 ground state structure. This study illustrates how the application of time-resolved X-ray techniques can provide insights into the electronic structures of molecules-in particular, transition metal complexes-that are difficult if not impossible to obtain by other means.

2.
Nature ; 509(7500): 345-8, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24805234

RESUMO

Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons. But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics and the flux limitations of ultrafast X-ray sources. Such a situation exists for archetypal polypyridyl iron complexes, such as [Fe(2,2'-bipyridine)3](2+), where the excited-state charge and spin dynamics involved in the transition from a low- to a high-spin state (spin crossover) have long been a source of interest and controversy. Here we demonstrate that femtosecond resolution X-ray fluorescence spectroscopy, with its sensitivity to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)3](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate that these capabilities will make our method a valuable tool for mapping in unprecedented detail the fundamental electronic excited-state dynamics that underpin many useful light-triggered molecular phenomena involving 3d transition metal complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA