Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell Mol Life Sci ; 81(1): 35, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214784

RESUMO

Diabetes mellitus is on the rise globally and is a known susceptibility factor for severe influenza virus infections. However, the mechanisms by which diabetes increases the severity of an influenza virus infection are yet to be fully defined. Diabetes mellitus is hallmarked by high glucose concentrations in the blood. We hypothesized that these high glucose concentrations affect the functionality of CD8+ T cells, which play a key role eliminating virus-infected cells and have been shown to decrease influenza disease severity. To study the effect of hyperglycemia on CD8+ T cell function, we stimulated peripheral blood mononuclear cells (PBMCs) from donors with and without diabetes with influenza A virus, anti-CD3/anti-CD28-coated beads, PMA and ionomycin (PMA/I), or an influenza viral peptide pool. After stimulation, cells were assessed for functionality [as defined by expression of IFN-γ, TNF-α, macrophage inflammatory protein (MIP)-1ß, and lysosomal-associated membrane protein-1 (CD107a)] using flow cytometry. Our results showed that increasing HbA1c correlated with a reduction in TNF-α production by CD8+ T cells in response to influenza stimulation in a TCR-specific manner. This was not associated with any changes to CD8+ T cell subsets. We conclude that hyperglycemia impairs CD8+ T cell function to influenza virus infection, which may be linked with the increased risk of severe influenza in patients with diabetes.


Assuntos
Diabetes Mellitus , Hiperglicemia , Vírus da Influenza A , Influenza Humana , Humanos , Linfócitos T CD8-Positivos/metabolismo , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Hemoglobinas Glicadas , Hiperglicemia/metabolismo , Leucócitos Mononucleares/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Front Physiol ; 12: 738594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621187

RESUMO

Selective SGLT2 inhibition reduces the risk of worsening heart failure and cardiovascular death in patients with existing heart failure, irrespective of diabetic status. We aimed to investigate the effects of dual SGLT1/2 inhibition, using sotagliflozin, on cardiac outcomes in normal diet (ND) and high fat diet (HFD) mice with cardiac pressure overload. Five-week-old male C57BL/6J mice were randomized to receive a HFD (60% of calories from fat) or remain on ND for 12 weeks. One week later, transverse aortic constriction (TAC) was employed to induce cardiac pressure-overload (50% increase in right:left carotid pressure versus sham surgery), resulting in left ventricular hypertrophic remodeling and cardiac fibrosis, albeit preserved ejection fraction. At 4 weeks post-TAC, mice were treated for 7 weeks by oral gavage once daily with sotagliflozin (10 mg/kg body weight) or vehicle (0.1% tween 80). In ND mice, treatment with sotagliflozin attenuated cardiac hypertrophy and histological markers of cardiac fibrosis induced by TAC. These benefits were associated with profound diuresis and glucosuria, without shifts toward whole-body fatty acid utilization, increased circulating ketones, nor increased cardiac ketolysis. In HFD mice, sotagliflozin reduced the mildly elevated glucose and insulin levels but did not attenuate cardiac injury induced by TAC. HFD mice had vacuolation of proximal tubular cells, associated with less profound sotagliflozin-induced diuresis and glucosuria, which suggests dampened drug action. We demonstrate the utility of dual SGLT1/2 inhibition in treating cardiac injury induced by pressure overload in normoglycemic mice. Its efficacy in high fat-fed mice with mild hyperglycemia and compromised renal morphology requires further study.

3.
Nutrients ; 13(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34684500

RESUMO

There is a paucity of data on whether Australian university students are meeting specific nutrient guidelines, and the relationship between diet and physical activity patterns with body composition and metabolic health. In this study, biomedical students from The University of Queensland were recruited (150 males and 211 females, 19-25 years), and nutritional intake (ASA24-Australia) and physical activity levels (Active Australia Survey) quantified. Body composition (height, waist circumference, body mass, BMI, and percentage body fat; BOD POD) and metabolic health (oral glucose tolerance test) were also measured. Median daily energy intake was 6760 kJ in females and 10,338 kJ in males, with more than 30% of total energy coming from energy-dense, nutrient-poor foods. Only 1 in 10 students met fruit or vegetable recommendations, with less than one third meeting recommendations for fibre, calcium, and potassium. Intakes of calcium and iron were particularly low among female students, with only 16% and 6% of students meeting the recommended dietary intake (RDI), respectively. The majority of males and almost half of all females exceeded the suggested dietary target (SDT) for sodium. Sufficient physical activity (≥150 min over ≥5 sessions per week) was met by more than 80% of students. Body composition and blood glucose concentrations were largely normal but an early sign of insulin resistance (HOMA-IR > 2.0), measured in a subset of students, was present in 21% of males and 17% of females. Modest reductions in blood glucose levels and percentage body fat were associated with increasing vigorous activity. Low intakes of fibre, calcium, and potassium could be corrected by increasing fruit, vegetable, and dairy intake, and, among females, health promotion messages focusing on iron-rich foods should be prioritised. While these nutrient deficiencies did not translate into immediate metabolic heath concerns, dietary behaviours can track into adulthood and have lasting effects on overall health.


Assuntos
Composição Corporal , Dieta Saudável/estatística & dados numéricos , Exercício Físico , Fidelidade a Diretrizes/estatística & dados numéricos , Estudantes de Medicina/estatística & dados numéricos , Adulto , Austrália , Glicemia/análise , Índice de Massa Corporal , Estudos Transversais , Dieta Saudável/normas , Ingestão de Alimentos , Comportamento Alimentar , Feminino , Teste de Tolerância a Glucose , Humanos , Masculino , Política Nutricional , Circunferência da Cintura
4.
Elife ; 92020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32697191

RESUMO

Diabetes mellitus is a known susceptibility factor for severe influenza virus infections. However, the mechanisms that underlie this susceptibility remain incompletely understood. Here, the effects of high glucose levels on influenza severity were investigated using an in vitro model of the pulmonary epithelial-endothelial barrier as well as an in vivo murine model of type II diabetes. In vitro we show that high glucose conditions prior to IAV infection increased virus-induced barrier damage. This was associated with an increased pro-inflammatory response in endothelial cells and the subsequent damage of the epithelial junctional complex. These results were subsequently validated in vivo. This study provides the first evidence that hyperglycaemia may increase influenza severity by damaging the pulmonary epithelial-endothelial barrier and increasing pulmonary oedema. These data suggest that maintaining long-term glucose control in individuals with diabetes is paramount in reducing the morbidity and mortality associated with influenza virus infections.


Assuntos
Células Endoteliais/fisiologia , Células Epiteliais/fisiologia , Glucose/metabolismo , Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Pulmão/fisiopatologia , Animais , Modelos Animais de Doenças , Células Endoteliais/virologia , Células Epiteliais/virologia , Feminino , Humanos , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Nutrients ; 12(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585830

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic resulted in physical isolation measures in many parts of the world. In Australia, nationwide restrictions included staying at home, unless seeking medical care, providing care, purchasing food, undertaking exercise, or attending work in an essential service. All undergraduate university classes transitioned to online, mostly home-based learning. We, therefore, examined the effect of isolation measures during the early phase of the COVID-19 pandemic in Australia (March/April) on diet (24-h recall) and physical activity (Active Australia Survey) patterns in third-year biomedical students. Findings were compared with students enrolled in the same course in the previous two years. In females, but not males, energy intake was ~20% greater during the pandemic, and snacking frequency and energy density of consumed snacks also increased compared with 2018 and 2019. Physical activity was impacted for both sexes during the pandemic with ~30% fewer students achieving "sufficient" levels of activity, defined by at least 150 min over at least five sessions, compared with the previous two years. In a follow-up study six to eight weeks later (14-18% response rate), during gradual easing of nationwide restrictions albeit continued gym closures and online learning, higher energy intake in females and reduced physical activity levels in both sexes persisted. These data demonstrate the health impacts of isolation measures, with the potential to affect long-term diet and activity behaviours.


Assuntos
Infecções por Coronavirus/psicologia , Dieta/estatística & dados numéricos , Exercício Físico/psicologia , Pneumonia Viral/psicologia , Quarentena/psicologia , Estudantes/estatística & dados numéricos , Adulto , Austrália/epidemiologia , Betacoronavirus , COVID-19 , Infecções por Coronavirus/prevenção & controle , Dieta/psicologia , Inquéritos sobre Dietas , Ingestão de Energia , Feminino , Seguimentos , Humanos , Masculino , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , SARS-CoV-2 , Estudantes/psicologia , Universidades , Adulto Jovem
6.
Pharmacol Res ; 134: 320-331, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29870806

RESUMO

Inhibition of the renin-angiotensin system in early postnatal life is a potential therapeutic approach to prevent long-term cardiovascular and kidney diseases in individuals born small. We determined the long-term effects of juvenile losartan treatment on cardiovascular and kidney function in control male rat offspring and those exposed to uteroplacental insufficiency and born small. Bilateral uterine vessel ligation (Restricted) or sham (Control) surgery was performed in late gestation in Wistar Kyoto rats. At weaning, male offspring were randomly assigned to receive losartan in their drinking water or drinking water alone from 5 to 8 weeks of age, and followed to 26 weeks of age. Systolic blood pressure and kidney function were assessed throughout the study. Pressure myography was used to assess passive mechanical wall properties in mesenteric and femoral arteries from 26-week-old offspring. Losartan treatment for three weeks lowered systolic blood pressure in both Control and Restricted groups but this difference was not sustained after the cessation of treatment. Losartan, irrespective of birth weight, mildly increased renal tubulointerstitial fibrosis when assessed at 26 weeks of age. Mesenteric artery stiffness was increased by the early losartan treatment, and was associated with increased collagen and decreased elastin content. Losartan also exerted long-term increases in fat mass and decreases in skeletal muscle mass. In this study, untreated Restricted offspring did not develop hypertension, vascular dysfunction or kidney changes as anticipated. Regardless, we demonstrate that short-term losartan treatment in the juvenile period negatively affects postnatal growth, and kidney and vascular parameters in adulthood, irrespective of birth weight. The long-term effects of early-life losartan treatment warrant further consideration in settings where the potential benefits may outweigh the risks; i.e. when programmed adulthood diseases are apparent and in childhood cardiovascular and kidney diseases.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Retardo do Crescimento Fetal/fisiopatologia , Hipertensão/prevenção & controle , Rim/efeitos dos fármacos , Losartan/farmacologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Fatores Etários , Bloqueadores do Receptor Tipo 1 de Angiotensina II/toxicidade , Animais , Animais Recém-Nascidos , Peso ao Nascer , Feminino , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/metabolismo , Artéria Femoral/fisiopatologia , Retardo do Crescimento Fetal/metabolismo , Fibrose , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Losartan/toxicidade , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Gravidez , Ratos Endogâmicos WKY , Rigidez Vascular/efeitos dos fármacos
7.
J Physiol ; 596(23): 5859-5872, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29604087

RESUMO

KEY POINTS: Low weight at birth increases the risk of developing chronic diseases in adulthood A diet that is high in salt is known to elevate blood pressure, which is a major risk factor for cardiovascular and kidney diseases The present study demonstrates that growth restricted male rats have a heightened sensitivity to high dietary salt, in the context of raised systolic blood pressure, reduced urinary sodium excretion and stiffer mesenteric resistance vessels Other salt-induced effects, such as kidney hyperfiltration, albuminuria and glomerular damage, were not exacerbated by being born small The present study demonstrates that male offspring born small have an increased cardiovascular susceptibility to high dietary salt, such that that minimizing salt intake is probably of particular benefit to this at-risk population ABSTRACT: Intrauterine growth restriction increases the risk of developing chronic diseases in adulthood. Lifestyle factors, such as poor dietary choices, may elevate this risk. We determined whether being born small increases the sensitivity to a dietary salt challenge, in the context of hypertension, kidney disease and arterial stiffness. Bilateral uterine vessel ligation or sham surgery (offspring termed Restricted and Control, respectively) was performed on 18-day pregnant Wistar Kyoto rats. Male offspring were allocated to receive a diet high in salt (8% sodium chloride) or remain on standard rat chow (0.52% sodium chloride) from 20 to 26 weeks of age for 6 weeks. Systolic blood pressure (tail-cuff), renal function (24 h urine excretions) and vascular stiffness (pressure myography) were assessed. Restricted males were born 15% lighter than Controls and remained smaller throughout the study. Salt-induced hypertension was exacerbated in Restricted offspring, reaching a peak systolic pressure of ∼175 mmHg earlier than normal weight counterparts. The natriuretic response to high dietary salt in Restricted animals was less than in Controls and may explain the early rise in arterial pressure. Growth restricted males allocated to a high salt diet also had increased passive arterial stiffness of mesenteric resistance arteries. Other aspects of renal function, including salt-induced hyperfiltration, albuminuria and glomerular damage, were not exacerbated by uteroplacental insufficiency. The present study demonstrates that male offspring exposed to uteroplacental insufficiency and born small have an increased sensitivity to salt-induced hypertension and arterial remodelling.


Assuntos
Retardo do Crescimento Fetal/fisiopatologia , Hipertensão/induzido quimicamente , Insuficiência Placentária/fisiopatologia , Cloreto de Sódio na Dieta/efeitos adversos , Animais , Pressão Sanguínea , Feminino , Hipertensão/fisiopatologia , Rim/patologia , Rim/fisiopatologia , Masculino , Artérias Mesentéricas/fisiopatologia , Gravidez , Ratos Endogâmicos WKY , Útero , Rigidez Vascular
8.
Sci Rep ; 6: 26428, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27226136

RESUMO

Blood glucose control is the primary strategy to prevent complications in diabetes. At the onset of kidney disease, therapies that inhibit components of the renin angiotensin system (RAS) are also indicated, but these approaches are not wholly effective. Here, we show that once daily administration of the novel glucose lowering agent, empagliflozin, an SGLT2 inhibitor which targets the kidney to block glucose reabsorption, has the potential to improve kidney disease in type 2 diabetes. In male db/db mice, a 10-week treatment with empagliflozin attenuated the diabetes-induced upregulation of profibrotic gene markers, fibronectin and transforming-growth-factor-beta. Other molecular (collagen IV and connective tissue growth factor) and histological (tubulointerstitial total collagen and glomerular collagen IV accumulation) benefits were seen upon dual therapy with metformin. Albuminuria, urinary markers of tubule damage (kidney injury molecule-1, KIM-1 and neutrophil gelatinase-associated lipocalin, NGAL), kidney growth, and glomerulosclerosis, however, were not improved with empagliflozin or metformin, and plasma and intra-renal renin activity was enhanced with empagliflozin. In this model, blood glucose lowering with empagliflozin attenuated some molecular and histological markers of fibrosis but, as per treatment with metformin, did not provide complete renoprotection. Further research to refine the treatment regimen in type 2 diabetes and nephropathy is warranted.


Assuntos
Albuminúria/metabolismo , Compostos Benzidrílicos/administração & dosagem , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Glucosídeos/administração & dosagem , Hipoglicemiantes/administração & dosagem , Albuminúria/urina , Animais , Compostos Benzidrílicos/farmacologia , Biomarcadores/metabolismo , Biomarcadores/urina , Diabetes Mellitus Experimental/genética , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Esquema de Medicação , Glucosídeos/farmacologia , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Hipoglicemiantes/farmacologia , Lipocalina-2/urina , Masculino , Camundongos , Resultado do Tratamento
9.
Bone ; 74: 199-207, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25659207

RESUMO

Low birth weight, due to uteroplacental insufficiency, results in programmed bone deficits in the first generation (F1). These deficits may be passed onto subsequent generations. We characterized the effects of being born small on maternal bone health during pregnancy; and aimed to characterize the contribution of the maternal environment and germ line effects to bone health in F2 offspring from mothers born small. Bilateral uterine vessel ligation (or sham) surgery was performed on female F0 WKY rats on gestational day 18 (term 22days) to induce uteroplacental insufficiency and fetal growth restriction. Control and Restricted F1 female offspring were allocated to a non-pregnant or pregnant group. To generate F2 offspring, F1 females were allocated to either non-embryo or embryo transfer groups. Embryo transfer was performed on gestational day 1, where second generation (F2) embryos were gestated (donor-in-recipient) in either a Control (Control-in-Control, Restricted-in-Control) or Restricted (Control-in-Restricted, Restricted-in-Restricted) mother. Restricted F1 females were born 10-15% lighter than Controls. Restricted non-pregnant females had shorter femurs, reduced trabecular and cortical bone mineral contents, trabecular density and bone geometry measures determined by peripheral quantitative computed tomography (pQCT) compared to non-pregnant Controls. Pregnancy restored the bone deficits that were present in F1 Restricted females. F2 non-embryo transfer male and female offspring were born of normal weight, while F2 embryo transfer males and females gestated in a Control mother (Control-in-Control, Restricted-in-Control) were heavier at birth compared to offspring gestated in a Restricted mother (Restricted-in-Restricted, Control-in-Restricted). Male F2 Restricted embryo groups (Restricted-in-Control and Restricted-in-Restricted) had accelerated postnatal growth. There was no transmission of bone deficits present at 35days or 6months in F2 offspring. Embryo transfer procedure had confounding effects preventing the separation of maternal environment and germ line contribution to outcomes. Deficits present in F1 non-pregnant Restricted females were absent during late gestation, indicating that pregnant F1 Restricted females experienced gains in bone. These beneficial maternal pregnancy adaptations may have prevented transmission of bone deficits to F2 offspring.


Assuntos
Envelhecimento/patologia , Osso e Ossos/fisiopatologia , Retardo do Crescimento Fetal/fisiopatologia , Animais , Peso Corporal , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Cruzamentos Genéticos , Transferência Embrionária , Feminino , Fêmur/patologia , Fêmur/fisiopatologia , Retardo do Crescimento Fetal/diagnóstico por imagem , Masculino , Gravidez , Ratos Endogâmicos WKY , Tomografia Computadorizada por Raios X
10.
Clin Exp Pharmacol Physiol ; 41(11): 884-90, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25199478

RESUMO

Epidemiological studies have shown an association between low birthweight and adult disease development with transmission to subsequent generations. The aim of the present study was to examine the effect of intrauterine growth restriction in rats, induced by uteroplacental insufficiency, on cardiac structure, number, size, nuclearity, and adult blood pressure in first (F1) and second (F2) generation male offspring. Uteroplacental insufficiency or sham surgery was induced in F0 Wistar-Kyoto pregnant rats in late gestation giving rise to F1 restricted and control offspring, respectively. F1 control and restricted females were mated with normal males, resulting in F2 control and restricted offspring, respectively. F1 restricted male offspring were significantly lighter at birth (P < 0.05), but there were no differences in birthweight of F2 offspring. Left ventricular weights and volumes were significantly increased (P < 0.05) in F1 and F2 restricted offspring at day 35. Left ventricular cardiomyocyte number was not different in F1 and F2 restricted offspring. At 6 months-of-age, F1 and F2 restricted offspring had elevated blood pressure (8-15 mmHg, P < 0.05). Our findings demonstrate the emergence of left ventricular hypertrophy and hypertension, with no change in cardiomyocyte number, in F1 restricted male offspring, and this was transmitted to the F2 offspring. The findings support transgenerational programming effects.


Assuntos
Retardo do Crescimento Fetal , Hipertensão/etiologia , Hipertrofia Ventricular Esquerda/etiologia , Circulação Placentária , Insuficiência Placentária , Efeitos Tardios da Exposição Pré-Natal/etiologia , Envelhecimento/patologia , Animais , Animais Recém-Nascidos , Peso ao Nascer/fisiologia , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/fisiopatologia , Ventrículos do Coração/embriologia , Ventrículos do Coração/crescimento & desenvolvimento , Hipertensão/patologia , Hipertrofia Ventricular Esquerda/patologia , Masculino , Tamanho do Órgão/fisiologia , Circulação Placentária/fisiologia , Insuficiência Placentária/fisiopatologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos Endogâmicos WKY , Caracteres Sexuais
11.
Diabetologia ; 57(9): 1977-85, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24957662

RESUMO

AIMS/HYPOTHESIS: The AGEs and the receptor for AGEs (RAGE) are known contributors to diabetic complications. RAGE also has a physiological role in innate and adaptive immunity and is expressed on immune cells. The aim of this study was to determine whether deletion of RAGE from bone-marrow-derived cells influences the pathogenesis of experimental diabetic nephropathy. METHODS: Groups (n = 8/group) of lethally irradiated 8 week old wild-type (WT) mice were reconstituted with bone marrow from WT (WT → WT) or RAGE-deficient (RG) mice (RG → WT). Diabetes was induced using multiple low doses of streptozotocin after 8 weeks of bone marrow reconstitution and mice were followed for a further 24 weeks. RESULTS: Compared with diabetic WT mice reconstituted with WT bone marrow, diabetic WT mice reconstituted with RG bone marrow had lower urinary albumin excretion and podocyte loss, more normal creatinine clearance and less tubulo-interstitial injury and fibrosis. However, glomerular collagen IV deposition, glomerulosclerosis and cortical levels of TGF-ß were not different among diabetic mouse groups. The renal tubulo-interstitium of diabetic RG → WT mice also contained fewer infiltrating CD68(+) macrophages that were activated. Diabetic RG → WT mice had lower renal cortical concentrations of CC chemokine ligand 2 (CCL2), macrophage inhibitory factor (MIF) and IL-6 than diabetic WT → WT mice. Renal cortical RAGE ligands S100 calgranulin (S100A)8/9 and AGEs, but not high mobility box protein B-1 (HMGB-1) were also decreased in diabetic RG → WT compared with diabetic WT → WT mice. In vitro, bone-marrow-derived macrophages from WT but not RG mice stimulated collagen IV production in cultured proximal tubule cells. CONCLUSIONS/INTERPRETATION: These studies suggest that RAGE expression on haemopoietically derived immune cells contributes to the functional changes seen in diabetic nephropathy by promoting macrophage infiltration and renal tubulo-interstitial damage.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Rim/metabolismo , Receptores Imunológicos/metabolismo , Animais , Diabetes Mellitus Experimental/genética , Macrófagos/metabolismo , Masculino , Camundongos , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética
12.
Am J Physiol Regul Integr Comp Physiol ; 306(8): R607-18, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24523338

RESUMO

Adverse conditions in utero can have transgenerational effects, in the absence of a subsequent insult. We aimed to investigate the contribution of the maternal pregnancy environment vs. germ line effects in mediating alterations to cardiorenal and metabolic physiology in offspring from mothers born small. Uteroplacental insufficiency was induced by bilateral uterine artery and vein ligation (Restricted group) or sham surgery (Control group) in Wistar-Kyoto rats. Restricted and control female offspring (F1) were mated with either breeder males (embryo donor) or vasectomized males (embryo recipient). Embryo transfer was performed at embryonic day (E) 1, whereby second-generation (F2) embryos gestated (donor-in-recipient) in either a control (Cont-in-Cont, Rest-in-Cont) or restricted (Cont-in-Rest, Rest-in-Rest) mother. In male and female offspring, glomerular number and size were measured at postnatal day (PN) 35, and systolic blood pressure, glucose control, insulin sensitivity, and pancreatic ß-cell mass were measured in separate sibling cohorts at 6 mo. Rest-in-Rest offspring were hypothesized to have similar characteristics (reduced growth, altered metabolic control, and hypertension) to non-embryo-transferred Rest, such that embryo transfer would not be a confounding experimental influence. However, embryo-transferred Rest-in-Rest offspring underwent accelerated growth during the peripubertal phase, followed by slowed growth between 2 and 3 mo of age compared with non-embryo-transferred Rest groups. Furthermore, renal function and insulin response to a glucose load were different to respective non-embryo-transferred groups. Our data demonstrate the long-term effects of in vitro embryo manipulation, which confounded the utility of this approach in delineating between the maternal pregnancy environment and germ line effects that drive transgenerational outcomes.


Assuntos
Suscetibilidade a Doenças , Transferência Embrionária , Células Germinativas/metabolismo , Resistência à Insulina/fisiologia , Insuficiência Placentária/metabolismo , Animais , Glicemia/metabolismo , Pressão Sanguínea/fisiologia , Peso Corporal/fisiologia , Modelos Animais de Doenças , Transferência Embrionária/métodos , Feminino , Teste de Tolerância a Glucose/métodos , Insulina/metabolismo , Masculino , Gravidez , Ratos , Ratos Endogâmicos WKY , Ratos Wistar
13.
Reprod Fertil Dev ; 26(7): 1032-43, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23910917

RESUMO

A developmental insult that restricts growth in the first generation has the potential to program disease in subsequent generations. The aim of this study was to ascertain transgenerational growth and cardio-renal effects, via the maternal line, in a rat model of utero-placental insufficiency. Bilateral uterine vessel ligation or sham surgery (offspring termed first generation; F1 Restricted and Control, respectively) was performed in WKY rats. F1 Restricted and Control females were mated with normal males to produce second generation (F2) offspring (Restricted and Control) studied from fetal (embryonic Day 20) to adult (12 months) life. F2 Restricted male and female fetuses had reduced (P<0.05) nephron number (down 15-22%) but this deficit was not sustained postnatally and levels were similar to Controls at Day 35. F2 Restricted males, but not females, developed elevated (+16mmHg, P<0.05) systolic blood pressure at 6 months of age, which was sustained to 9 months. This was not explained by alterations to intra-renal or plasma components of the renin-angiotensin system. In a rat model of utero-placental insufficiency, we report alterations to F2 kidney development and sex-specific adult hypertension. This study demonstrates that low birthweight can have far-reaching effects that extend into the next generation.


Assuntos
Hipertensão/etiologia , Néfrons/anormalidades , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Peso Corporal , Feminino , Retardo do Crescimento Fetal/fisiopatologia , Rim/embriologia , Masculino , Néfrons/embriologia , Tamanho do Órgão , Circulação Placentária/fisiologia , Insuficiência Placentária/fisiopatologia , Gravidez , Ratos , Ratos Endogâmicos WKY , Sistema Renina-Angiotensina , Fatores Sexuais , Útero/irrigação sanguínea
14.
J Endocrinol ; 217(1): 105-18, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23420315

RESUMO

Intrauterine growth restriction increases adult metabolic disease risk with evidence to suggest that suboptimal conditions in utero can have transgenerational effects. We determined whether impaired glucose tolerance, reduced insulin secretion, and pancreatic deficits are evident in second-generation (F2) male and female offspring from growth-restricted mothers, in a rat model of uteroplacental insufficiency. Late gestation uteroplacental insufficiency was induced by bilateral uterine vessel ligation (restricted) or sham surgery (control) in Wistar-Kyoto rats. First-generation (F1) control and restricted females were mated with normal males and F2 offspring studied at postnatal day 35 and at 6 and 12 months. F2 glucose tolerance, insulin secretion, and sensitivity were assessed at 6 and 12 months and pancreatic morphology was quantified at all study ages. At 6 months, F2 restricted male offspring exhibited blunted first-phase insulin response (-35%), which was associated with reduced pancreatic ß-cell mass (-29%). By contrast, F2 restricted females had increased ß-cell mass despite reduced first-phase insulin response (-38%). This was not associated with any changes in plasma estradiol concentrations. Regardless of maternal birth weight, F2 control and restricted males had reduced homeostatic model assessment of insulin resistance and elevated plasma triglyceride concentrations at 6 months and reduced whole-body insulin sensitivity at 6 and 12 months compared with females. We report that low maternal birth weight is associated with reduced first-phase insulin response and gender-specific differences in pancreatic morphology in the F2. Further studies will define the mode(s) of disease transmission, including direct insults to developing gametes, adverse maternal responses to pregnancy, or inherited mechanisms.


Assuntos
Modelos Animais de Doenças , Intolerância à Glucose/etiologia , Hipertrigliceridemia/etiologia , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Insuficiência Placentária/fisiopatologia , Doenças Uterinas/fisiopatologia , Animais , Peso ao Nascer , Feminino , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/fisiopatologia , Intolerância à Glucose/congênito , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Hipertrigliceridemia/congênito , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/patologia , Ligadura/efeitos adversos , Masculino , Gravidez , Distribuição Aleatória , Ratos , Ratos Endogâmicos WKY , Caracteres Sexuais , Artéria Uterina/cirurgia
15.
PLoS One ; 7(9): e45188, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028837

RESUMO

There is a strong inverse relationship between a females own birth weight and her subsequent risk for gestational diabetes with increased risk of developing diabetes later in life. We have shown that growth restricted females develop loss of glucose tolerance during late pregnancy with normal pancreatic function. The aim of this study was to determine whether growth restricted females develop long-term impairment of metabolic control after an adverse pregnancy adaptation. Uteroplacental insufficiency was induced by bilateral uterine vessel ligation (Restricted) or sham surgery (Control) in late pregnancy (E18) in F0 female rats. F1 Control and Restricted female offspring were mated with normal males and allowed to deliver (termed Ex-Pregnant). Age-matched Control and Restricted Virgins were also studied and glucose tolerance and insulin secretion were determined. Pancreatic morphology and hepatic glycogen and triacylglycerol content were quantified respectively. Restricted females were born lighter than Control and remained lighter at all time points studied (p<0.05). Glucose tolerance, first phase insulin secretion and liver glycogen and triacylglycerol content were not different across groups, with no changes in ß-cell mass. Second phase insulin secretion was reduced in Restricted Virgins (-34%, p<0.05) compared to Control Virgins, suggestive of enhanced peripheral insulin sensitivity but this was lost after pregnancy. Growth restriction was associated with enhanced basal hepatic insulin sensitivity, which may provide compensatory benefits to prevent adverse metabolic outcomes often associated with being born small. A prior pregnancy was associated with reduced hepatic insulin sensitivity with effects more pronounced in Controls than Restricted. Our data suggests that pregnancy ameliorates the enhanced peripheral insulin sensitivity in growth restricted females and has deleterious effects for hepatic insulin sensitivity, regardless of maternal birth weight.


Assuntos
Diabetes Gestacional/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Insuficiência Placentária/metabolismo , Prenhez , Adulto , Animais , Animais Recém-Nascidos , Glicemia/metabolismo , Peso Corporal , Diabetes Gestacional/fisiopatologia , Feminino , Teste de Tolerância a Glucose , Glicogênio/metabolismo , Humanos , Recém-Nascido de Baixo Peso/metabolismo , Recém-Nascido , Resistência à Insulina , Células Secretoras de Insulina/patologia , Fígado/metabolismo , Masculino , Modelos Biológicos , Insuficiência Placentária/fisiopatologia , Gravidez , Ratos , Risco , Triglicerídeos/metabolismo
16.
FASEB J ; 26(10): 4337-47, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22772163

RESUMO

Uteroplacental insufficiency is associated with adult cardiorenal and metabolic diseases, particularly in males. Pregnancy is the greatest physiological challenge facing women, and those born small are at increased risk of gestational hypertension and diabetes and delivering smaller babies. Increased maternal age is associated with exacerbated pregnancy complications. We hypothesized that pregnancy in aged, growth-restricted females unmasks an underlying predisposition to cardiorenal and metabolic dysfunction and compromises fetal growth. Uteroplacental insufficiency was induced by bilateral uterine vessel ligation (restricted group) or sham surgery (control group) on d 18 of gestation in Wistar Kyoto rats. At 12 mo, growth-restricted F1 female offspring were mated with a normal male. F1 restricted females had elevated systolic blood pressure, before and during pregnancy (+10 mmHg) but normal renal and metabolic pregnancy adaptations. F2 fetal weight was not different between groups. In control and restricted females, advanced maternal age (12 vs. 4 mo) was associated with a reduction in the hypoglycemic response to pregnancy and reduced F2 fetal litter size and body weight. Aged rats born small exhibited mostly normal pregnancy adaptations, although they had elevated blood pressure. Advanced maternal age was associated with poorer fetal outcomes that were not exacerbated by low maternal birth weight.


Assuntos
Desenvolvimento Fetal/fisiologia , Retardo do Crescimento Fetal/fisiopatologia , Rim/fisiopatologia , Animais , Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Peso Corporal/genética , Peso Corporal/fisiologia , Feminino , Desenvolvimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Tamanho do Órgão/genética , Tamanho do Órgão/fisiologia , Gravidez , Ratos , Ratos Endogâmicos WKY
17.
J Physiol ; 590(3): 617-30, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22144579

RESUMO

Intrauterine growth restriction caused by uteroplacental insufficiency increases risk of cardiovascular and metabolic disease in offspring. Cardio-renal and metabolic responses to pregnancy are critical determinants of immediate and long-term maternal health. However, no studies to date have investigated the renal and metabolic adaptations in growth restricted offspring when they in turn become pregnant. We hypothesised that the physiological challenge of pregnancy in growth restricted females exacerbates disease outcome and compromises next generation fetal growth. Uteroplacental insufficiency was induced by bilateral uterine vessel ligation (Restricted) or sham surgery (Control) on day 18 of gestation in WKY rats and F1 female offspring birth and postnatal body weights were recorded. F1 Control and Restricted females were mated at 4 months and blood pressure, renal and metabolic parameters were measured in late pregnancy and F2 fetal and placental weights recorded. Age-matched non-pregnant Control and Restricted F1 females were also studied. F1 Restricted females were born 10-15% lighter than Controls. Basal insulin secretion and pancreatic ß-cell mass were reduced in non-pregnant Restricted females but restored in pregnancy. Pregnant Restricted females, however, showed impaired glucose tolerance and compensatory glomerular hypertrophy, with a nephron deficit but normal renal function and blood pressure. F2 fetuses from Restricted mothers exposed to physiological measures during pregnancy were lighter than Controls highlighting additive adverse effects when mothers born small experience stress during pregnancy. Female rats born small exhibit mostly normal cardio-renal adaptations but altered glucose control during late pregnancy making them vulnerable to lifestyle challenges.


Assuntos
Retardo do Crescimento Fetal/fisiopatologia , Animais , Glicemia/análise , Peso Corporal , Feminino , Retardo do Crescimento Fetal/patologia , Coração/crescimento & desenvolvimento , Insulina/sangue , Rim/patologia , Rim/fisiologia , Masculino , Tamanho do Órgão , Pâncreas/crescimento & desenvolvimento , Pâncreas/patologia , Insuficiência Placentária/patologia , Insuficiência Placentária/fisiopatologia , Gravidez , Ratos , Ratos Endogâmicos WKY , Útero/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA