Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 123(10): 2331-2340, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37294517

RESUMO

BACKGROUND: Older adults are susceptible to dehydration and fluid overload due to a reduced ability to maintain homeostatic control of fluid and electrolyte balance. PURPOSE: To assess fluid and electrolyte balance responses in young and older men following ingestion of commonly consumed beverages differing in composition. METHODS: 12 young and 11 older men were recruited. Euhydrated body mass was recorded. Participants consumed 1L (250 ml every 15 min) of water, fruit juice, a sports drink or low-fat milk in a randomized cross-over design. Urine and blood samples were obtained before and after the drinking period and every hour thereafter for 3-h. Samples were used to determine osmolality, electrolytes (Na+ and K+), water clearance, and glomerular filtration rate. RESULTS: Free water clearance was significantly higher in Young than Older at 1 and 2 h after the ingestion of W and S (p < 0.05). Net Na+ and K+ balance were not different between Young and Older (p = 0.91 and p = 0.65) adults, respectively. At 3 h Na+ balance was negative after ingesting water and fruit juice, but neutral after sport drink and milk. Net K+ balance was neutral at 3 h after ingesting milk, but negative after water, fruit juice and sport drink. CONCLUSIONS: Milk was retained longer than other beverages in Young, but not in Older, despite similar net electrolyte balance responses. Older had higher fluid retention in the first 2 h after the ingestion of all beverages, except for milk when compared to Young, indicating an age-related loss of ability to regulate fluid balance under current study conditions.


Assuntos
Desidratação , Equilíbrio Hidroeletrolítico , Idoso , Humanos , Masculino , Bebidas/análise , Ingestão de Alimentos , Eletrólitos , Íons , Sódio , Água , Equilíbrio Hidroeletrolítico/fisiologia , Adulto
2.
Eur J Sport Sci ; 23(8): 1666-1676, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37010103

RESUMO

We aimed to investigate the influence of 4-wk of fish oil (FO) supplementation on markers of muscle damage, inflammation, muscle soreness, and muscle function during acute recovery from eccentric exercise in moderately trained males. Sixteen moderately-trained males ingested 5 g/d of FO (n = 8) or soybean oil (placebo) capsules (n = 8) for 4-wk prior to- and 3-d following an acute eccentric exercise bout. Eccentric exercise consisted of 12 sets of isokinetic knee extension and knee flexion. Indices of muscle damage, soreness, function and inflammation were measured at baseline and during exercise recovery. Eccentric exercise elicited an increase in muscle soreness (p < 0.010) and thigh volume (p < 0.001), and reduced peak isometric torque by 31.7 ± 6.9%, (p < 0.05, 95% CI 10.6-52.8) during 3-d of recovery. Blood omega-3 polyunsaturated fatty acid concentration was 14.9 ± 2.4% higher in FO than PLA (p < 0.01, 95% CI 9.8-20.1). However, FO did not ameliorate the cumulative creatine kinase response (expressed as AUC; p = 0.368), inflammation (p = 0.400), muscle soreness (p > 0.140), or muscle function (p > 0.249) following eccentric exercise. FO supplementation confers no clear benefit in terms of ameliorating the degree of muscle damage, or facilitating the muscle repair process, during acute eccentric exercise recovery. These data suggest that FO supplementation does not provide an effective nutritional strategy to promote exercise recovery, at least in moderately-trained young men.Abbreviations: ANOVA: Analysis of variance; AUC: Area under curve; CI: Confidence interval; CK: Creatine kinase; CMJ: Countermovement jump; COX: Cyclooxygenase; CRP: C-reactive protein; DHA: Docosahexaenoic acid; DOMS: Delayed-onset muscle soreness; EIMD: Exercise-induced muscle damage; En%: Energy percent; EPA: Eicosapentaenoic acid; FO: Fish oil; IL-6: Interleukin-6; LDH: Lactate dehydrogenase; LOX: Lipoxygenase; Mb: Myoglobin; mTOR: Mechanistic target of rapamycin; PLA: Placebo; ROM: Range of motion; ROS: Reactive oxygen species; SD: Standard deviation; SEM: Standard error of the mean; TNF-α: Tumour necrosis factor alpha; VAS: Visual analogue scale; Ω3-PUFA: Omega-3 polyunsaturated fatty acids; Ω6-PUFA: Omega-6 polyunsaturated fatty acidsHighlightsThe anti-inflammatory properties of omega-3 polyunsaturated fatty acids, alongside their propensity to incorporate into the muscle phospholipid membrane underpins the idea that fish oil supplementation may attenuate muscle damage and promote muscle repair following eccentric-based exercise.Four weeks of high-dose (5 g/d) fish oil supplementation prior to eccentric exercise failed to attenuate the rise in creatine kinase concentration and muscle soreness during acute exercise recovery in physically-active young men.Future studies are warranted to investigate the efficacy of combining omega-3 polyunsaturated fatty acids with other nutrients (i.e. protein/amino acids) for the promotion of muscle recovery following eccentric-based damaging exercise.


Assuntos
Ácidos Graxos Ômega-3 , Óleos de Peixe , Masculino , Humanos , Mialgia , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Inflamação , Exercício Físico/fisiologia , Músculos , Creatina Quinase , Poliésteres/farmacologia , Poliésteres/uso terapêutico , Músculo Esquelético/fisiologia
3.
Eur J Sport Sci ; 22(5): 697-708, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34121620

RESUMO

This review explores the effects of oestrogen and progesterone fluctuations across the menstrual cycle on fluid and electrolyte balance. The review aims to provide information on this topic for the exercising female but also for researchers working in this field. Beginning with a basic introduction to fluid and electrolyte balance, the review goes on to describe how oestrogen and progesterone have independent and integrated roles to play in the regulation of fluid and electrolyte balance. Despite evidence that oestrogen can influence the osmotic threshold for arginine vasopressin release, and that progesterone can influence aldosterone production, these actions do not appear to influence fluid retention, plasma volume changes at rest and during exercise, or electrolyte losses. However, the large inter-individual variations in hormonal fluctuations throughout the menstrual cycle may mean that specific individuals with high fluctuations could experience disturbances in their fluid and electrolyte balance. During phases of oestrogen dominance (e.g. late-follicular phase) heat dissipation is promoted, while progesterone dominance (e.g. mid-luteal phase) promotes heat conservation with overall higher basal body temperature. However, these responses do not consistently lead to any change in observed sweat rates, heat-stress, or dehydration during exercise. Finally, the literature does not support any difference in fluid retention during post-exercise rehydration periods conducted at different menstrual cycle phases. Although these mean responses largely reveal no effects on fluid and electrolyte balance, further research is required particularly in those individuals who experience high hormonal fluctuations, and greater exploration of oestrogen to progesterone interactions is warranted.


Assuntos
Progesterona , Equilíbrio Hidroeletrolítico , Estrogênios , Feminino , Humanos , Fase Luteal , Ciclo Menstrual/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia
4.
Physiol Rep ; 8(16): e14529, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845565

RESUMO

Understanding human physiological responses to high-fat energy excess (HFEE) may help combat the development of metabolic disease. We aimed to investigate the impact of manipulating the n-3PUFA content of HFEE diets on whole-body and skeletal muscle markers of insulin sensitivity. Twenty healthy males were overfed (150% energy, 60% fat, 25% carbohydrate, 15% protein) for 6 d. One group (n = 10) received 10% of fat intake as n-3PUFA rich fish oil (HF-FO), and the other group consumed a mix of fats (HF-C). Oral glucose tolerance tests with stable isotope tracer infusions were conducted before, and following, HFEE, with muscle biopsies obtained in basal and insulin-stimulated states for measurement of membrane phospholipids, ceramides, mitochondrial enzyme activities, and PKB and AMPKα2 activity. Insulin sensitivity and glucose disposal did not change following HFEE, irrespective of group. Skeletal muscle ceramide content increased following HFEE (8.5 ± 1.2 to 12.1 ± 1.7 nmol/mg, p = .03), irrespective of group. No change in mitochondrial enzyme activity was observed following HFEE, but citrate synthase activity was inversely associated with the increase in the ceramide content (r=-0.52, p = .048). A time by group interaction was observed for PKB activity (p = .003), with increased activity following HFEE in HF-C (4.5 ± 13.0mU/mg) and decreased activity in HF-FO (-10.1 ± 20.7 mU/mg) following HFEE. Basal AMPKα2 activity increased in HF-FO (4.1 ± 0.6 to 5.3 ± 0.7mU/mg, p = .049), but did not change in HF-C (4.6 ± 0.7 to 3.8 ± 0.9mU/mg) following HFEE. We conclude that early skeletal muscle signaling responses to HFEE appear to be modified by dietary n-3PUFA content, but the potential impact on future development of metabolic disease needs exploring.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-3/metabolismo , Hiperfagia/metabolismo , Músculo Esquelético/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Adolescente , Adulto , Ceramidas/metabolismo , Humanos , Masculino , Estresse Oxidativo , Fosfolipídeos/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Int J Sport Nutr Exerc Metab ; 29(6): 651-657, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31629351

RESUMO

The present study examined the impact of hormonal differences between late follicular (LF) and midluteal (ML) phases on restoration of fluid balance following dehydration. Ten eumenorrheic female participants were dehydrated by 2% of their body mass through overnight fluid restriction followed by exercise-heat stress. Trials were undertaken during the LF (between Days 10 and 13 of the menstrual cycle) and ML phases (between Days 18 and 23 of the menstrual cycle) with one phase repeated to assess reliability of observations. Following dehydration, participants ingested a volume equivalent to 100% of mass loss of a commercially available sports drink in four equal volumes over 30 min. Mean serum values for steroid hormones during the ML (estradiol [E2]: 92 ± 11 pg/ml, progesterone: 19 ± 4 ng/ml) and LF (estradiol [E2]: 232 ± 64 pg/ml, progesterone: 3 ± 2 ng/ml) were significantly different between phases. Urine tests confirmed no luteinizing hormone surge evident during LF trials. There was no effect of menstrual cycle phase on cumulative urine volume during the 3-hr rehydration period (ML: 630 [197-935] ml, LF: 649 [180-845] ml) with percentage of fluid retained being 47% (33-85)% on ML and 46% (37-89)% on LF (p = .29). There was no association between the progesterone:estradiol ratio and fluid retained in either phase. Net fluid balance, urine osmolality, and thirst intensity were not different between phases. No differences in sodium (ML: -61 [-36 to -131] mmol, LF: -73 [-5 to -118] mmol; p = .45) or potassium (ML: -36 [-11 to -80] mmol, LF: -30 [-19 to -89] mmol; p = .96) balance were observed. Fluid replacement after dehydration does not appear to be affected by normal hormonal fluctuations during the menstrual cycle in eumenorrheic young women.


Assuntos
Desidratação/fisiopatologia , Desidratação/terapia , Hidratação/métodos , Ciclo Menstrual/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Adolescente , Adulto , Biomarcadores/metabolismo , Estradiol/metabolismo , Exercício Físico/fisiologia , Feminino , Humanos , Progesterona/metabolismo , Soluções para Reidratação , Sede/fisiologia , Urinálise , Adulto Jovem
6.
Front Nutr ; 6: 102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31380384

RESUMO

Background: A detrimental consequence of diet-induced weight loss, common in athletes who participate in weight cutting sports, is muscle loss. Dietary omega-3 polyunsaturated fatty acids (n-3PUFA) exhibit a protective effect on the loss of muscle tissue during catabolic situations such as injury-simulated leg immobilization. This study aimed to investigate the influence of dietary n-3PUFA supplementation on changes in body composition and muscle strength following short-term diet-induced weight loss in resistance-trained men. Methods: Twenty resistance-trained young (23 ± 1 years) men were randomly assigned to a fish oil group that supplemented their diet with 4 g n-3PUFA, 18 g carbohydrate, and 5 g protein (FO) or placebo group containing an equivalent carbohydrate and protein content (CON) over a 6 week period. During weeks 1-3, participants continued their habitual diet. During week 4, participants received all food items to control energy balance and a macronutrient composition of 50% carbohydrate, 35% fat, and 15% protein. During weeks 5 and 6, participants were fed an energy-restricted diet equivalent to 60% habitual energy intake. Body composition and strength were measured during weeks 1, 4, and 6. Results: The decline in total body mass (FO = -3.0 ± 0.3 kg, CON = -2.6 ± 0.3 kg), fat free mass (FO = -1.4 ± 0.3 kg, CON = -1.2 ± 0.3 kg) and fat mass (FO = -1.4 ± 0.2 kg, CON = -1.3 ± 0.3 kg) following energy restriction was similar between groups (all p > 0.05; d: 0.16-0.39). Non-dominant leg extension 1 RM increased (6.1 ± 3.4%) following energy restriction in FO (p < 0.05, d = 0.29), with no changes observed in CON (p > 0.05, d = 0.05). Dominant leg extension 1 RM tended to increase following energy restriction in FO (p = 0.09, d = 0.29), with no changes in CON (p > 0.05, d = 0.06). Changes in leg press 1 RM, maximum voluntary contraction and muscular endurance following energy restriction were similar between groups (p > 0.05, d = 0.05). Conclusion: Any possible improvements in muscle strength during short-term weight loss with n-3PUFA supplementation are not related to the modulation of FFM in resistance-trained men.

7.
Int J Sport Nutr Exerc Metab ; 28(1): 26-36, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28871832

RESUMO

Soccer players often experience eccentric exercise-induced muscle damage given the physical demands of soccer match-play. Since long chain n-3 polyunsaturated fatty acids (n-3PUFA) enhance muscle sensitivity to protein supplementation, dietary supplementation with a combination of fish oil-derived n-3PUFA, protein, and carbohydrate may promote exercise recovery. This study examined the influence of adding n-3PUFA to a whey protein, leucine, and carbohydrate containing beverage over a six-week supplementation period on physiological markers of recovery measured over three days following eccentric exercise. Competitive soccer players were assigned to one of three conditions (2 × 200 mL): a fish oil supplement beverage (FO; n = 10) that contained n-3PUFA (1100 mg DHA/EPA-approximately 550 mg DHA, 550 mg EPA), whey protein (15 g), leucine (1.8 g), and carbohydrate (20 g); a protein supplement beverage (PRO; n = 10) that contained whey protein (15 g), leucine (1.8 g), and carbohydrate (20 g); and a carbohydrate supplement beverage (CHO; n = 10) that contained carbohydrate (24 g). Eccentric exercise consisted of unilateral knee extension/flexion contractions on both legs separately. Maximal force production was impaired by 22% during the 72-hour recovery period following eccentric exercise (p < 0.05). Muscle soreness, expressed as area under the curve (AUC) during 72-hour recovery, was less in FO (1948 ± 1091 mm × 72 h) than PRO (4640 ± 2654 mm × 72 h, p < 0.05) and CHO (4495 ± 1853 mm × 72 h, p = 0.10). Blood concentrations of creatine kinase, expressed as AUC, were ~60% lower in FO compared to CHO (p < 0.05) and tended to be lower (~39%, p = 0.07) than PRO. No differences in muscle function, soccer performance, or blood c-reactive protein concentrations were observed between groups. In conclusion, the addition of n-3PUFA to a beverage containing whey protein, leucine, and carbohydrate ameliorates the increase in muscle soreness and blood concentrations of creatine kinase following eccentric exercise in competitive soccer players.


Assuntos
Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Mialgia/terapia , Futebol , Fenômenos Fisiológicos da Nutrição Esportiva , Atletas , Proteína C-Reativa/análise , Creatina Quinase/sangue , Carboidratos da Dieta/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Humanos , Leucina/administração & dosagem , Masculino , Músculo Esquelético/fisiologia , Proteínas do Soro do Leite/administração & dosagem , Adulto Jovem
8.
Physiol Rep ; 4(6)2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27009278

RESUMO

Fish oil (FO) supplementation potentiates muscle protein synthesis (MPS) in response to a hyperaminoacidemic-hyperinsulinemic infusion. Whether FO supplementation potentiates MPS in response to protein ingestion or when protein ingestion is combined with resistance exercise (RE) remains unknown. In a randomized, parallel group design, 20 healthy males were randomized to receive 5 g/day of either FO or coconut oil control (CO) for 8 weeks. After supplementation, participants performed a bout of unilateral RE followed by ingestion of 30 g of whey protein. Skeletal muscle biopsies were obtained before and after supplementation for assessment of muscle lipid composition and relevant protein kinase activities. Infusion of L-[ring-(13)C6] phenylalanine was used to measure basal myofibrillar MP Sat rest (REST), in a nonexercised leg following protein ingestion (FED) and following RE and protein ingestion (FEDEX).MPS was significantly elevated above REST during FEDEX in both the FO and CO groups, but there was no effect of supplementation. There was a significant increase in MPS in both groups above REST during FED but no effect of supplementation. Supplementation significantly decreased pan PKB activity at RESTin the FO group but not the CO group. There was a significant increase from REST at post-RE for PKB and AMPKα2 activity in the CO group but not in the FO group. In FEDEX, there was a significant increase in p70S6K1 activity from REST at 3 h in the CO group only. These data highlight that 8 weeks of FO supplementation alters kinase signaling activity in response to RE plus protein ingestion without influencing MPS.


Assuntos
Anabolizantes/administração & dosagem , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Miofibrilas/efeitos dos fármacos , Treinamento Resistido , Proteínas Quinases Ativadas por AMP/metabolismo , Biópsia , Humanos , Masculino , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Fosfolipídeos/metabolismo , Fosforilação , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Escócia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
9.
Prostaglandins Leukot Essent Fatty Acids ; 90(6): 199-206, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24726616

RESUMO

The aim of this study was to examine changes in the lipid profile of red blood cells and muscle tissue along with the expression of anabolic signalling proteins in human skeletal muscle. Following a 2-week control period, 10 healthy male participants consumed 5 g d(-1) of fish oil (FO) for 4 weeks. Muscle biopsies and venous blood samples were collected in the fasted state 2 weeks prior (W-2) and immediately before (W0) the initiation of FO supplementation for internal control. Muscle biopsies and venous blood samples were again obtained at week 1 (W1), 2 (W2) and 4 (W4) during FO supplementation for assessment of changes in lipid composition and expression of anabolic signalling proteins. There was no change in the composition of any lipid class between W-2 and W0 confirming control. Following FO supplementation n-3 polyunsaturated fatty acid (n-3 PUFA) muscle lipid composition was increased from W0 to W2 and continued to rise at W4. n-3 PUFA blood lipid composition was increased from W0 to W1 and remained elevated for the remaining time points. Total protein content of focal adhesion kinase (FAK) increased from W0 to W4 whereas total mechanistic target of rapamycin (mTOR) was increased from W0 at W1 with no further significant increases at W2 and W4. These data show that FO supplementation results in discordant changes in the n-3 PUFA composition of skeletal muscle compared to blood that is associated with increases in total FAK content.


Assuntos
Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Lipídeos/sangue , Músculo Esquelético/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Anabolizantes/administração & dosagem , Proteínas de Ciclo Celular , Quinase 1 de Adesão Focal/metabolismo , Humanos , Masculino , Músculo Esquelético/efeitos dos fármacos , Fosfoproteínas/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem
10.
J Appl Physiol (1985) ; 114(4): 461-71, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23264537

RESUMO

This study was undertaken to investigate physiological adaptation with two endurance-training periods differing in intensity distribution. In a randomized crossover fashion, separated by 4 wk of detraining, 12 male cyclists completed two 6-wk training periods: 1) a polarized model [6.4 (±1.4 SD) h/wk; 80%, 0%, and 20% of training time in low-, moderate-, and high-intensity zones, respectively]; and 2) a threshold model [7.5 (±2.0 SD) h/wk; 57%, 43%, and 0% training-intensity distribution]. Before and after each training period, following 2 days of diet and exercise control, fasted skeletal muscle biopsies were obtained for mitochondrial enzyme activity and monocarboxylate transporter (MCT) 1 and 4 expression, and morning first-void urine samples were collected for NMR spectroscopy-based metabolomics analysis. Endurance performance (40-km time trial), incremental exercise, peak power output (PPO), and high-intensity exercise capacity (95% maximal work rate to exhaustion) were also assessed. Endurance performance, PPOs, lactate threshold (LT), MCT4, and high-intensity exercise capacity all increased over both training periods. Improvements were greater following polarized rather than threshold for PPO [mean (±SE) change of 8 (±2)% vs. 3 (±1)%, P < 0.05], LT [9 (±3)% vs. 2 (±4)%, P < 0.05], and high-intensity exercise capacity [85 (±14)% vs. 37 (±14)%, P < 0.05]. No changes in mitochondrial enzyme activities or MCT1 were observed following training. A significant multilevel, partial least squares-discriminant analysis model was obtained for the threshold model but not the polarized model in the metabolomics analysis. A polarized training distribution results in greater systemic adaptation over 6 wk in already well-trained cyclists. Markers of muscle metabolic adaptation are largely unchanged, but metabolomics markers suggest different cellular metabolic stress that requires further investigation.


Assuntos
Ciclismo , Exercício Físico , Contração Muscular , Músculo Esquelético/fisiologia , Resistência Física , Adaptação Fisiológica , Adulto , Biomarcadores/urina , Biópsia , Estudos Cross-Over , Análise Discriminante , Teste de Esforço , Humanos , Análise dos Mínimos Quadrados , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica/métodos , Mitocôndrias Musculares/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fadiga Muscular , Proteínas Musculares/metabolismo , Força Muscular , Músculo Esquelético/metabolismo , Escócia , Simportadores/metabolismo , Fatores de Tempo , Urinálise
11.
J Appl Physiol (1985) ; 105(2): 643-51, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18583380

RESUMO

This study examined 1) the plasma taurine response to acute oral taurine supplementation (T), and 2) the effects of 7 days of T on muscle amino acid content and substrate metabolism during 2 h of cycling at approximately 60% peak oxygen consumption (VO2peak). In the first part of the study, after an overnight fast, 7 volunteers (28+/-3 yr, 184+/-2 cm, 88.0+/-6.6 kg) ingested 1.66 g oral taurine doses with breakfast (8 AM) and lunch (12 noon), and blood samples were taken throughout the day. In the second part of the study, eight men (22+/-1 yr, 181+/-1 cm, 80.9+/-3.8 kg, 4.21+/-0.16 l/min VO2peak) cycled for 2 h after 7 days of placebo (P) ingestion (6 g glucose/day) and again following 7 days of T (5 g/day). In the first part of the study, plasma taurine was 64+/-4 microM before T and rose rapidly to 778+/-139 microM by 10 AM and remained elevated at noon (359+/-56 microM). Plasma taurine reached 973+/-181 microM at 1 PM and was 161+/-31 microM at 4 PM. In the second part of the study, seven days of T had no effect on muscle taurine content (mmol/kg dry muscle) at rest (P, 44+/-15 vs. T, 42+/-15) or after exercise (P, 43+/-12 vs. T, 43+/-11). There was no difference in muscle glycogen or other muscle metabolites between conditions, but there were notable interaction effects for muscle valine, isoleucine, leucine, cystine, glutamate, alanine, and arginine amino acid content following exercise after T. These data indicate that 1) acute T produces a 13-fold increase in plasma taurine concentration; 2) despite the ability to significantly elevate plasma taurine for extended periods throughout the day, 7 days of T does not alter skeletal muscle taurine content or carbohydrate and fat oxidation during exercise; and 3) T appears to have some impact on muscle amino acid response to exercise.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Taurina/metabolismo , Taurina/farmacologia , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Aminoácidos/metabolismo , Limiar Anaeróbio/efeitos dos fármacos , Limiar Anaeróbio/fisiologia , Glicemia/metabolismo , Creatina/metabolismo , Suplementos Nutricionais , Ácidos Graxos não Esterificados/sangue , Feminino , Glicogênio/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Humanos , Ácido Láctico/sangue , Masculino , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Fosfocreatina/metabolismo , Troca Gasosa Pulmonar/efeitos dos fármacos , Taurina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA