Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 22(2): 167-179, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643292

RESUMO

The findings that amyotrophic lateral sclerosis (ALS) patients almost universally display pathological mislocalization of the RNA-binding protein TDP-43 and that mutations in its gene cause familial ALS have nominated altered RNA metabolism as a disease mechanism. However, the RNAs regulated by TDP-43 in motor neurons and their connection to neuropathy remain to be identified. Here we report transcripts whose abundances in human motor neurons are sensitive to TDP-43 depletion. Notably, expression of STMN2, which encodes a microtubule regulator, declined after TDP-43 knockdown and TDP-43 mislocalization as well as in patient-specific motor neurons and postmortem patient spinal cord. STMN2 loss upon reduced TDP-43 function was due to altered splicing, which is functionally important, as we show STMN2 is necessary for normal axonal outgrowth and regeneration. Notably, post-translational stabilization of STMN2 rescued neurite outgrowth and axon regeneration deficits induced by TDP-43 depletion. We propose that restoring STMN2 expression warrants examination as a therapeutic strategy for ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Neurônios Motores/metabolismo , Axônios/metabolismo , Linhagem Celular , Regulação para Baixo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Medula Espinal/metabolismo , Estatmina
2.
Curr Biol ; 27(6): 890-896, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28285993

RESUMO

Axon degeneration during development is required to sculpt a functional nervous system and is also a hallmark of pathological insult, such as injury [1, 2]. Despite similar morphological characteristics, very little overlap in molecular mechanisms has been reported between pathological and developmental degeneration [3-5]. In the peripheral nervous system (PNS), developmental axon pruning relies on receptor-mediated extrinsic degeneration mechanisms to determine which axons are maintained or degenerated [5-7]. Receptors have not been implicated in Wallerian axon degeneration; instead, axon autonomous, intrinsic mechanisms are thought to be the primary driver for this type of axon disintegration [8-10]. Here we survey the role of neuronally expressed, paralogous tumor necrosis factor receptor super family (TNFRSF) members in Wallerian degeneration. We find that an orphan receptor, death receptor 6 (DR6), is required to drive axon degeneration after axotomy in sympathetic and sensory neurons cultured in microfluidic devices. We sought to validate these in vitro findings in vivo using a transected sciatic nerve model. Consistent with the in vitro findings, DR6-/- animals displayed preserved axons up to 4 weeks after injury. In contrast to phenotypes observed in Wlds and Sarm1-/- mice, preserved axons in DR6-/- animals display profound myelin remodeling. This indicates that deterioration of axons and myelin after axotomy are mechanistically distinct processes. Finally, we find that JNK signaling after injury requires DR6, suggesting a link between this novel extrinsic pathway and the axon autonomous, intrinsic pathways that have become established for Wallerian degeneration.


Assuntos
Axônios/patologia , Bainha de Mielina/patologia , Receptores do Fator de Necrose Tumoral/genética , Degeneração Walleriana/genética , Animais , Axotomia , Camundongos , Receptores do Fator de Necrose Tumoral/metabolismo , Degeneração Walleriana/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA