Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Cells ; 13(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891049

RESUMO

The ß-thalassemias are inherited genetic disorders affecting the hematopoietic system. In ß-thalassemias, more than 350 mutations of the adult ß-globin gene cause the low or absent production of adult hemoglobin (HbA). A clinical parameter affecting the physiology of erythroid cells is the excess of free α-globin. Possible experimental strategies for a reduction in excess free α-globin chains in ß-thalassemia are CRISPR-Cas9-based genome editing of the ß-globin gene, forcing "de novo" HbA production and fetal hemoglobin (HbF) induction. In addition, a reduction in excess free α-globin chains in ß-thalassemia can be achieved by induction of the autophagic process. This process is regulated by the Unc-51-like kinase 1 (Ulk1) gene. The interplay with the PI3K/Akt/TOR pathway, with the activity of the α-globin stabilizing protein (AHSP) and the involvement of microRNAs in autophagy and Ulk1 gene expression, is presented and discussed in the context of identifying novel biomarkers and potential therapeutic targets for ß-thalassemia.


Assuntos
Autofagia , Talassemia beta , Humanos , Talassemia beta/genética , Talassemia beta/patologia , Talassemia beta/metabolismo , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Animais , Transdução de Sinais , Edição de Genes , Peptídeos e Proteínas de Sinalização Intracelular
2.
Exp Hematol ; 129: 104128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939833

RESUMO

During the recent coronavirus disease 2019 (COVID-19) pandemic several patients with ß-thalassemia have been infected by severe acute respiratory syndrome coronavirus (SARS-CoV-2), and most patients were vaccinated against SARS-CoV-2. Recent studies demonstrate an impact of SARS-CoV-2 infection on the hematopoietic system. The main objective of this study was to verify the effects of exposure of erythroid precursor cells (ErPCs) from patients with ß-thalassemia to SARS-CoV-2 spike protein (S-protein) and the BNT162b2 vaccine. Erythropoietin (EPO)-cultured ErPCs have been either untreated or treated with S-protein or BNT162b2 vaccine. The employed ErPCs were from a ß-thalassemia cellular Biobank developed before the COVID-19 pandemic. The genotypes were ß+-IVSI-110/ß+-IVSI-110 (one patient),  ß039/ß+-IVSI-110 (3 patients), and ß039/ ß039 (2 patients). After treatment with S-protein or BNT162b2 for 5 days, lysates were analyzed by high performance liquid chromatography (HPLC), for hemoglobin production, and isolated RNA was assayed by RT-qPCR, for detection of globin gene expression. The main conclusions of the results obtained are that SARS-CoV-2 S-protein and BNT162b2 vaccine (a) inhibit fetal hemoglobin (HbF) production by ß-thalassemic ErPCs and (b) inhibit γ-globin mRNA accumulation. In addition, we have performed in silico studies suggesting a high affinity of S-protein to HbF. Remarkably, the binding interaction energy of fetal hemoglobin to S-protein was comparable with that of angiotensin-converting enzyme 2 (ACE2). Our results are consistent with the hypothesis of a relevant impact of SARS-CoV-2 infection and COVID-19 vaccination on the hematopoietic system.


Assuntos
COVID-19 , Eritropoetina , Vacinas , Talassemia beta , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Vacina BNT162 , Talassemia beta/genética , Células Precursoras Eritroides , Vacinas contra COVID-19 , Hemoglobina Fetal , Pandemias , SARS-CoV-2 , Expressão Gênica , Anticorpos Antivirais
3.
Exp Cell Res ; 433(2): 113853, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944576

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causative of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The SARS-CoV-2 Spike protein (S-protein) plays an important role in the early phase of SARS-CoV-2 infection through efficient interaction with ACE2. The S-protein is produced by RNA-based COVID-19 vaccines, that were fundamental for the reduction of the viral spread within the population and the clinical severity of COVID-19. However, the S-protein has been hypothesized to be responsible for damaging cells of several tissues and for some important side effects of RNA-based COVID-19 vaccines. Considering the impact of COVID-19 and SARS-CoV-2 infection on the hematopoietic system, the aim of this study was to verify the effect of the BNT162b2 vaccine on erythroid differentiation of the human K562 cell line, that has been in the past intensively studied as a model system mimicking some steps of erythropoiesis. In this context, we focused on hemoglobin production and induced expression of embryo-fetal globin genes, that are among the most important features of K562 erythroid differentiation. We found that the BNT162b2 vaccine suppresses mithramycin-induced erythroid differentiation of K562 cells. Reverse-transcription-qPCR and Western blotting assays demonstrated that suppression of erythroid differentiation was associated with sharp inhibition of the expression of α-globin and γ-globin mRNA accumulation. Inhibition of accumulation of ζ-globin and ε-globin mRNAs was also observed. In addition, we provide in silico studies suggesting a direct interaction between SARS-CoV-2 Spike protein and Hb Portland, that is the major hemoglobin produced by K562 cells. This study thus provides information suggesting the need of great attention on possible alteration of hematopoietic parameters following SARS-CoV-2 infection and/or COVID-19 vaccination.


Assuntos
COVID-19 , Leucemia Eritroblástica Aguda , Humanos , Células K562 , Plicamicina/farmacologia , Plicamicina/metabolismo , Vacinas contra COVID-19/metabolismo , Vacina BNT162 , Leucemia Eritroblástica Aguda/metabolismo , COVID-19/prevenção & controle , COVID-19/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Hemoglobinas/metabolismo , RNA Mensageiro/genética , Células Eritroides/metabolismo
4.
Genes (Basel) ; 14(10)2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37895276

RESUMO

The anticancer drug mithramycin (MTH), has been proposed for drug repurposing after the finding that it is a potent inducer of fetal hemoglobin (HbF) production in erythroid precursor cells (ErPCs) from ß-thalassemia patients. In this respect, previously published studies indicate that MTH is very active in inducing increased expression of γ-globin genes in erythroid cells. This is clinically relevant, as it is firmly established that HbF induction is a valuable approach for the therapy of ß-thalassemia and for ameliorating the clinical parameters of sickle-cell disease (SCD). Therefore, the identification of MTH biochemical/molecular targets is of great interest. This study is inspired by recent robust evidence indicating that the expression of γ-globin genes is controlled in adult erythroid cells by different transcriptional repressors, including Oct4, MYB, BCL11A, Sp1, KLF3 and others. Among these, BCL11A is very important. In the present paper we report evidence indicating that alterations of BCL11A gene expression and biological functions occur during MTH-mediated erythroid differentiation. Our study demonstrates that one of the mechanisms of action of MTH is a down-regulation of the transcription of the BCL11A gene, while a second mechanism of action is the inhibition of the molecular interactions between the BCL11A complex and specific sequences of the γ-globin gene promoter.


Assuntos
Talassemia beta , gama-Globinas , Humanos , gama-Globinas/genética , gama-Globinas/metabolismo , Talassemia beta/genética , Plicamicina/farmacologia , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética
5.
Biology (Basel) ; 12(9)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37759601

RESUMO

In this review article, we present the fascinating story of rapamycin (sirolimus), a drug able to induce γ-globin gene expression and increased production of fetal hemoglobin (HbF) in erythroid cells, including primary erythroid precursor cells (ErPCs) isolated from ß-thalassemia patients. For this reason, rapamycin is considered of great interest for the treatment of ß-thalassemia. In fact, high levels of HbF are known to be highly beneficial for ß-thalassemia patients. The story of rapamycin discovery began in 1964, with METEI, the Medical Expedition to Easter Island (Rapa Nui). During this expedition, samples of the soil from different parts of the island were collected and, from this material, an antibiotic-producing microorganism (Streptomyces hygroscopicus) was identified. Rapamycin was extracted from the mycelium with organic solvents, isolated, and demonstrated to be very active as an anti-bacterial and anti-fungal agent. Later, rapamycin was demonstrated to inhibit the in vitro cell growth of tumor cell lines. More importantly, rapamycin was found to be an immunosuppressive agent applicable to prevent kidney rejection after transplantation. More recently, rapamycin was found to be a potent inducer of HbF both in vitro using ErPCs isolated from ß-thalassemia patients, in vivo using experimental mice, and in patients treated with this compound. These studies were the basis for proposing clinical trials on ß-thalassemia patients.

6.
Pharmaceutics ; 15(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37631335

RESUMO

One of the most appealing approaches for regulating gene expression, named the "microRNA therapeutic" method, is based on the regulation of the activity of microRNAs (miRNAs), the intracellular levels of which are dysregulated in many diseases, including cancer. This can be achieved by miRNA inhibition with antimiRNA molecules in the case of overexpressed microRNAs, or by using miRNA-mimics to restore downregulated microRNAs that are associated with the target disease. The development of new efficient, low-toxic, and targeted vectors of such molecules represents a key topic in the field of the pharmacological modulation of microRNAs. We compared the delivery efficiency of a small library of cationic calix[4]arene vectors complexed with fluorescent antimiRNA molecules (Peptide Nucleic Acids, PNAs), pre-miRNA (microRNA precursors), and mature microRNAs, in glioma- and colon-cancer cellular models. The transfection was assayed by cytofluorimetry, cell imaging assays, and RT-qPCR. The calix[4]arene-based vectors were shown to be powerful tools to facilitate the uptake of both neutral (PNAs) and negatively charged (pre-miRNAs and mature microRNAs) molecules showing low toxicity in transfected cells and ability to compete with commercially available vectors in terms of delivery efficiency. These results could be of great interest to validate microRNA therapeutics approaches for future application in personalized treatment and precision medicine.

7.
Hematol Rep ; 15(3): 432-439, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37489374

RESUMO

The ß-thalassemias are a group of monogenic hereditary hematological disorders caused by deletions and/or mutations of the ß-globin gene, leading to low or absent production of adult hemoglobin (HbA). For ß-thalassemia, sirolimus has been under clinical consideration in two trials (NCT03877809 and NCT04247750). A reduced immune response to anti-SARS-CoV-2 vaccination has been reported in organ recipient patients treated with the immunosuppressant sirolimus. Therefore, there was some concern regarding the fact that monotherapy with sirolimus would reduce the antibody response after SARS-CoV-2 vaccination. In the representative clinical case reported in this study, sirolimus treatment induced the expected increase of fetal hemoglobin (HbF) but did not prevent the production of anti-SARS-CoV-2 IgG after vaccination with mRNA-1273 (Moderna). In our opinion, this case report should stimulate further studies on ß-thalassemia patients under sirolimus monotherapy in order to confirm the safety (or even the positive effects) of sirolimus with respect to the humoral response to anti-SARS-CoV-2 vaccination. In addition, considering the extensive use of sirolimus for the treatment of other human pathologies (for instance, in organ transplantation, systemic lupus erythematosus, autoimmune cytopenia, and lymphangioleiomyomatosis), this case report study might be of general interest, as large numbers of patients are currently under sirolimus treatment.

8.
Pharmaceutics ; 15(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37242574

RESUMO

Combined treatments employing lower concentrations of different drugs are used and studied to develop new and more effective anticancer therapeutic approaches. The combination therapy could be of great interest in the controlling of cancer. Regarding this, our research group has recently shown that peptide nucleic acids (PNAs) that target miR-221 are very effective and functional in inducing apoptosis of many tumor cells, including glioblastoma and colon cancer cells. Moreover, in a recent paper, we described a series of new palladium allyl complexes showing a strong antiproliferative activity on different tumor cell lines. The present study was aimed to analyze and validate the biological effects of the most active compounds tested, in combination with antagomiRNA molecules targeting two miRNAs, miR-221-3p and miR-222-3p. The obtained results show that a "combination therapy", produced by combining the antagomiRNAs targeting miR-221-3p, miR-222-3p and the palladium allyl complex 4d, is very effective in inducing apoptosis, supporting the concept that the combination treatment of cancer cells with antagomiRNAs targeting a specific upregulated oncomiRNAs (in this study miR-221-3p and miR-222-3p) and metal-based compounds represents a promising therapeutic strategy to increase the efficacy of the antitumor protocol, reducing side effects at the same time.

9.
Noncoding RNA ; 9(2)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37104011

RESUMO

(1) Background: MicroRNAs are involved in the expression of the gene encoding the chloride channel CFTR (Cystic Fibrosis Transmembrane Conductance Regulator); the objective of this short report is to study the effects of the treatment of bronchial epithelial Calu-3 cells with molecules mimicking the activity of pre-miR-145-5p, pre-miR-335-5p, and pre-miR-101-3p, and to discuss possible translational applications of these molecules in pre-clinical studies focusing on the development of protocols of possible interest in therapy; (2) Methods: CFTR mRNA was quantified by Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR). The production of the CFTR protein was assessed by Western blotting; (3) Results: The treatment of Calu-3 cells with agomiR-145-5p caused the highest inhibition of CFTR mRNA accumulation and CFTR production; (4) Conclusions: The treatment of target cells with the agomiR pre-miR-145-5p should be considered when CFTR gene expression should be inhibited in pathological conditions, such as polycystic kidney disease (PKD), some types of cancer, cholera, and SARS-CoV-2 infection.

10.
Nat Commun ; 14(1): 132, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627352

RESUMO

As an inherited disorder characterized by severe pulmonary disease, cystic fibrosis could be considered a comorbidity for coronavirus disease 2019. Instead, current clinical evidence seems to be heading in the opposite direction. To clarify whether host factors expressed by the Cystic Fibrosis epithelia may influence coronavirus disease 2019 progression, here we describe the expression of SARS-CoV-2 receptors in primary airway epithelial cells. We show that angiotensin converting enzyme 2 (ACE2) expression and localization are regulated by Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Consistently, our results indicate that dysfunctional CFTR channels alter susceptibility to SARS-CoV-2 infection, resulting in reduced viral entry and replication in Cystic Fibrosis cells. Depending on the pattern of ACE2 expression, the SARS-CoV-2 spike (S) protein induced high levels of Interleukin 6 in healthy donor-derived primary airway epithelial cells, but a very weak response in primary Cystic Fibrosis cells. Collectively, these data support that Cystic Fibrosis condition may be at least partially protecting from SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Fibrose Cística , SARS-CoV-2 , Internalização do Vírus , Humanos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulação para Baixo , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Replicação Viral
11.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430961

RESUMO

A series of new-generation TMA (4,6,4'-trimethyl angelicin) analogues was projected and synthetized in order to ameliorate anti-inflammatory activity, with reduced or absent toxicity. Since the NF-κB transcription factor (TF) plays a critical role in the expression of IL-8 (Interluekin 8), a typical marker of lung inflammation in Cystic Fibrosis (CF), the use of agents able to interfere with the NF-κB pathway represents an interesting therapeutic strategy. Through preliminary EMSA experiments, we identified several new TMA derivatives able to inhibit the NF-κB/DNA complex. The selected active molecules were then analyzed to evaluate the anti-inflammatory effect using both Pseudomonas aeruginosa (PAO1) infection and TNF-alpha stimulus on the CF IB3-1 cell line. It was demonstrated that mainly two TMA analogues, GY971a mesylate salt (6-p-minophenyl-4,4'-dimethyl-angelicin) and GY964 (4-phenyl-6,4'-dimethyl-angelicin), were able to decrease the IL-8 gene expression. At the same time, these molecules were found to have no pro-apoptotic, mutagenic and phototoxic effects, facilitating our decision to test the efficacy in vivo by using a mouse model of acute P. aeruginosa lung infection. The anti-inflammatory effect of GY971a was confirmed in vivo; this derivative was able to deeply decrease the total number of inflammatory cells, the neutrophil count and the cytokine/chemokine profile in the P. aeruginosa acute infection model, without evident toxicity. Considering all the obtained and reported in vitro and in vivo pre-clinical results, GY971a seems to have interesting anti-inflammatory effects, modulating the NF-κB pathway, as well as the starting lead compound TMA, but without side effects.


Assuntos
Fibrose Cística , Cistos , Furocumarinas , Humanos , Fibrose Cística/genética , NF-kappa B/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Furocumarinas/farmacologia , Cistos/tratamento farmacológico , Pseudomonas aeruginosa/metabolismo
12.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232826

RESUMO

A small library of new angelicin derivatives was designed and synthesized with the aim of bypassing the side effects of trimethylangelicin (TMA), a promising agent for the treatment of cystic fibrosis. To prevent photoreactions with DNA, hindered substituents were inserted at the 4 and/or 6 positions. Unlike the parent TMA, none of the new derivatives exhibited significant cytotoxicity or mutagenic effects. Among the synthesized compounds, the 4-phenylderivative 12 and the 6-phenylderivative 25 exerted a promising F508del CFTR rescue ability. On these compounds, preliminary in vivo pharmacokinetic (PK) studies were carried out, evidencing a favorable PK profile per se or after incorporation into lipid formulations. Therefore, the selected compounds are good candidates for future extensive investigation to evaluate and develop novel CFTR correctors based on the angelicin structure.


Assuntos
Fibrose Cística , Furocumarinas , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , DNA/uso terapêutico , Furocumarinas/química , Furocumarinas/farmacologia , Furocumarinas/uso terapêutico , Humanos , Lipídeos/uso terapêutico , Mutação
13.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012615

RESUMO

The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encodes for a chloride channel defective in Cystic Fibrosis (CF). Accordingly, upregulation of its expression might be relevant for the development of therapeutic protocols for CF. MicroRNAs are deeply involved in the CFTR regulation and their targeting with miRNA inhibitors (including those based on Peptide Nucleic Acids, PNAs)is associated with CFTR upregulation. Targeting of miR-145-5p, miR-101-3p, and miR-335-5p with antisense PNAs was found to be associated with CFTR upregulation. The main objective of this study was to verify whether combined treatments with the most active PNAs are associated with increased CFTR gene expression. The data obtained demonstrate that synergism of upregulation of CFTR production can be obtained by combined treatments of Calu-3 cells with antisense PNAs targeting CFTR-regulating microRNAs. In particular, highly effective combinations were found with PNAs targeting miR-145-5p and miR-101-3p. Content of mRNAs was analyzed by RT-qPCR, the CFTR production by Western blotting. Combined treatment with antagomiRNAs might lead to maximized upregulation of CFTR and should be considered in the development of protocols for CFTR activation in pathological conditions in which CFTR gene expression is lacking, such as Cystic Fibrosis.


Assuntos
Antagomirs , Fibrose Cística , MicroRNAs , Ácidos Nucleicos Peptídicos , Regiões 3' não Traduzidas , Antagomirs/farmacologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , MicroRNAs/genética , Ácidos Nucleicos Peptídicos/farmacologia
14.
Int J Mol Sci ; 23(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35682670

RESUMO

(1) Background: In the development of new and more effective anticancer approaches, combined treatments appear of great interest. Combination therapy could be of importance in the management of glioblastoma (GBM), a lethal malignancy that accounts for 42% of cancer of the central nervous system, with a median survival of 15 months. This study aimed to verify the activity on a glioblastoma cancer cell line of one of the most active compounds of a novel series of tubulin polymerization inhibitors based on the 1-(3',4',5'-trimethoxyphenyl)-2-aryl-1H-imidazole scaffold, used in combination with a miRNA inhibitor molecule targeting the oncomiRNA miR-10b-5p. This microRNA was selected in consideration of the role of miR-10b-5p on the onset and progression of glioblastoma. (2) Methods: Apoptosis was analyzed by Annexin-V and Caspase 3/7 assays, efficacy of the anti-miR-10b-5p was assessed by determining the miR-10b-5p content by RT-qPCR. (3) Results: The results obtained show that a "combination therapy" performed by combining the use of an anti-miR-10b-5p and a 1-(3',4',5'-trimethoxyphenyl)-2-aryl-1H-imidazole derivative is an encouraging strategy to boost the efficacy of anticancer therapies and at the same time to reduce side effects.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Antagomirs , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Imidazóis/farmacologia , MicroRNAs/metabolismo
15.
Curr Opin Pharmacol ; 64: 102214, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35453033

RESUMO

Defects of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein affect the homeostasis of chloride, bicarbonate, sodium, and water in the airway surface liquid, influencing the mucus composition and viscosity, which induces a severe condition of infection and inflammation along the whole life of CF patients. The introduction of CFTR modulators, novel drugs directly intervening to rescue the function of CFTR protein, opens a new era of experimental research. The review summarizes the most recent advancements to understand the characteristics of the infective and inflammatory pathology of CF lungs.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Inflamação , Transporte de Íons , Pulmão/metabolismo
16.
Molecules ; 27(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35209084

RESUMO

Glioblastoma multiforme (GBM) is a lethal malignant tumor accounting for 42% of the tumors of the central nervous system, the median survival being 15 months. At present, no curative treatment is available for GBM and new drugs and therapeutic protocols are urgently needed. In this context, combined therapy appears to be a very interesting approach. The isothiocyanate sulforaphane (SFN) has been previously shown to induce apoptosis and inhibit the growth and invasion of GBM cells. On the other hand, the microRNA miR-15b is involved in invasiveness and proliferation in GBM and its inhibition is associated with the induction of apoptosis. On the basis of these observations, the objective of the present study was to determine whether a combined treatment using SFN and a peptide nucleic acid interfering with miR-15b-5p (PNA-a15b) might be proposed for increasing the pro-apoptotic effects of the single agents. To verify this hypothesis, we have treated GMB U251 cells with SFN alone, PNA-a15b alone or their combination. The cell viability, apoptosis and combination index were, respectively, analyzed by calcein staining, annexin-V and caspase-3/7 assays, and RT-qPCR for genes involved in apoptosis. The efficacy of the PNA-a15b determined the miR-15b-5p content analyzed by RT-qPCR. The results obtained indicate that SFN and PNA-a15b synergistically act in inducing the apoptosis of U251 cells. Therefore, the PNA-a15b might be proposed in a "combo-therapy" associated with SFN. Overall, this study suggests the feasibility of using combined treatments based on PNAs targeting miRNA involved in GBM and nutraceuticals able to stimulate apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Isotiocianatos/farmacologia , MicroRNAs/genética , Ácidos Nucleicos Peptídicos/farmacologia , Sulfóxidos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Glioblastoma , Humanos
17.
Cancers (Basel) ; 15(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36612125

RESUMO

Liquid biopsy has dramatically changed cancer management in the last decade; however, despite the huge number of miRNA signatures available for diagnostic or prognostic purposes, it is still unclear if dysregulated miRNAs in the bloodstream could be used to develop miRNA-based therapeutic approaches. In one author's previous work, nine miRNAs were found to be dysregulated in early-stage colon cancer (CRC) patients by NGS analysis followed by RT-dd-PCR validation. In the present study, the biological effects of the targeting of the most relevant dysregulated miRNAs with anti-miRNA peptide nucleic acids (PNAs) were verified, and their anticancer activity in terms of apoptosis induction was evaluated. Our data demonstrate that targeting bloodstream up-regulated miRNAs using anti-miRNA PNAs leads to the down-regulation of target miRNAs associated with inhibition of the activation of the pro-apoptotic pathway in CRC cellular models. Moreover, very high percentages of apoptotic cells were found when the anti-miRNA PNAs were associated with other pro-apoptotic agents, such as sulforaphane (SFN). The presented data sustain the idea that the targeting of miRNAs up-regulated in the bloodstream with a known role in tumor pathology might be a tool for the design of protocols for anti-tumor therapy based on miRNA-targeting molecules.

18.
Int Immunopharmacol ; 101(Pt B): 108201, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34653729

RESUMO

One of the major clinical features of COVID-19 is a hyperinflammatory state, which is characterized by high expression of cytokines (such as IL-6 and TNF-α), chemokines (such as IL-8) and growth factors and is associated with severe forms of COVID-19. For this reason, the control of the "cytokine storm" represents a key issue in the management of COVID-19 patients. In this study we report evidence that the release of key proteins of the COVID-19 "cytokine storm" can be inhibited by mimicking the biological activity of microRNAs. The major focus of this report is on IL-8, whose expression can be modified by the employment of a molecule mimicking miR-93-5p, which is able to target the IL-8 RNA transcript and modulate its activity. The results obtained demonstrate that the production of IL-8 protein is enhanced in bronchial epithelial IB3-1 cells by treatment with the SARS-CoV-2 Spike protein and that IL-8 synthesis and extracellular release can be strongly reduced using an agomiR molecule mimicking miR-93-5p.


Assuntos
Células Epiteliais/imunologia , Interleucina-8/imunologia , MicroRNAs , Glicoproteína da Espícula de Coronavírus/imunologia , Brônquios/citologia , Linhagem Celular , Humanos , Interleucina-8/genética
19.
Cells ; 10(8)2021 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-34440719

RESUMO

Neuroblastoma (NB) is a common malignant solid tumor in children and accounts for 15% of childhood cancer mortality. Amplification of the N-Myc oncogene is a well-established poor prognostic marker in NB patients and strongly correlates with higher tumor aggression and resistance to treatment. New therapies for patients with N-Myc-amplified NB need to be developed. After treating NB cells with BSAO/SPM, the detection of apoptosis was determined after annexin V-FITC labeling and DNA staining with propidium iodide. The mitochondrial membrane potential activity was checked, labeling cells with the probe JC-1 dye. We analyzed, by real-time RT-PCR, the transcript of genes involved in the apoptotic process, to determine possible down- or upregulation of mRNAs after the treatment on SJNKP and the N-Myc-amplified IMR5 cell lines with BSAO/SPM. The experiments were carried out considering the proapoptotic genes Tp53 and caspase-3. After treatment with BSAO/SPM, both cell lines displayed increased mRNA levels for all these proapoptotic genes. Western blotting analysis with PARP and caspase-3 antibody support that BSAO/SPM treatment induces high levels of apoptosis in cells. The major conclusion is that BSAO/SPM treatment leads to antiproliferative and cytotoxic activity of both NB cell lines, associated with activation of apoptosis.


Assuntos
Amina Oxidase (contendo Cobre)/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , MicroRNAs/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/tratamento farmacológico , Espermina/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Caspase 3/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , MicroRNAs/genética , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/enzimologia , Neuroblastoma/genética , Ratos Wistar , Transdução de Sinais , Espermina/metabolismo , Proteína Supressora de Tumor p53/genética
20.
Int J Oncol ; 59(2)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34278445

RESUMO

In the development of novel and more effective anticancer approaches, combined treatments appear to be of great interest, based on the possibility of obtaining relevant biological or therapeutic effects using lower concentrations of single drugs. Combination therapy may prove to be of utmost significance in the management of glioblastoma (GBM), a lethal malignancy that accounts for 42% of cancer cases of the central nervous system, with a median survival rate of 15 months. As regards novel therapeutic approaches, the authors have recently demonstrated that peptide nucleic acids (PNAs) that target microRNA (miRNA/miR)­221 are very active in inducing the apoptosis of glioma cells. Furthermore, in a recent study, the authors described two novel series of tubulin polymerization inhibitors based on the 4,5,6,7­tetrahydrothieno[2,3­c]pyridine and 4,5,6,7­tetrahydrobenzo[b]thiophene scaffold, which exerted a potent anti­proliferative effect on a variety of tumor cell lines. The present study aimed to verify the activity on glioblastoma cancer cell lines of one of the most active compounds tested, corresponding to 2­(3', 4', 5'­trimethoxyanilino)­3­cyano/alkoxycarbonyl­6­substituted­4 5,6,7­tetrahydrothiene[2,3­c] pyridine (compound 3b), used in combination with an anti­miR­221­3p PNA, already demonstrated to be able to induce high levels of apoptosis. To the best of our knowledge, the results obtained herein demonstrate for the first time a 'combination therapy' performed by the combined use of a PNA targeting miR­221 and the tetrahydrothiene[2,3­c]pyridine derivative 3b, supporting the concept that the combined treatment of GBM cells with a PNA against a specific upregulated oncomiRNA (in the present study a PNA targeting miR­221­3p was used) and anti­tubulin agents (in the present study derivative 3b was used) is an encouraging strategy which may be used to enhance the efficacy of anticancer therapies and at the same time, to reduce side­effects.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , MicroRNAs/genética , Ácidos Nucleicos Peptídicos/farmacologia , Piridinas/farmacologia , Moduladores de Tubulina/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/tratamento farmacológico , Humanos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA