Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 499
Filtrar
3.
ACS Nano ; 17(3): 2554-2567, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36688431

RESUMO

Raman spectroscopy provides excellent specificity for in vivo preclinical imaging through a readout of fingerprint-like spectra. To achieve sufficient sensitivity for in vivo Raman imaging, metallic gold nanoparticles larger than 10 nm were employed to amplify Raman signals via surface-enhanced Raman scattering (SERS). However, the inability to excrete such large gold nanoparticles has restricted the translation of Raman imaging. Here we present Raman-active metallic gold supraclusters that are biodegradable and excretable as nanoclusters. Although the small size of the gold nanocluster building blocks compromises the electromagnetic field enhancement effect, the supraclusters exhibit bright and prominent Raman scattering comparable to that of large gold nanoparticle-based SERS nanotags due to high loading of NIR-resonant Raman dyes and much suppressed fluorescence background by metallic supraclusters. The bright Raman scattering of the supraclusters was pH-responsive, and we successfully performed in vivo Raman imaging of acidic tumors in mice. Furthermore, in contrast to large gold nanoparticles that remain in the liver and spleen over 4 months, the supraclusters dissociated into small nanoclusters, and 73% of the administered dose to mice was excreted during the same period. The highly excretable Raman supraclusters demonstrated here offer great potential for clinical applications of in vivo Raman imaging.


Assuntos
Nanopartículas Metálicas , Neoplasias , Animais , Camundongos , Ouro/química , Nanopartículas Metálicas/química , Neoplasias/diagnóstico por imagem , Análise Espectral Raman/métodos , Diagnóstico por Imagem
4.
Sci Adv ; 9(3): eadd1166, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662860

RESUMO

Although literature suggests that resistance to TNF inhibitor (TNFi) therapy in patients with ulcerative colitis (UC) is partially linked to immune cell populations in the inflamed region, there is still substantial uncertainty underlying the relevant spatial context. Here, we used the highly multiplexed immunofluorescence imaging technology CODEX to create a publicly browsable tissue atlas of inflammation in 42 tissue regions from 29 patients with UC and 5 healthy individuals. We analyzed 52 biomarkers on 1,710,973 spatially resolved single cells to determine cell types, cell-cell contacts, and cellular neighborhoods. We observed that cellular functional states are associated with cellular neighborhoods. We further observed that a subset of inflammatory cell types and cellular neighborhoods are present in patients with UC with TNFi treatment, potentially indicating resistant niches. Last, we explored applying convolutional neural networks (CNNs) to our dataset with respect to patient clinical variables. We note concerns and offer guidelines for reporting CNN-based predictions in similar datasets.


Assuntos
Colite Ulcerativa , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/complicações , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Inflamação/complicações , Biomarcadores
5.
Sci Adv ; 8(37): eabn6550, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112679

RESUMO

Assessing the efficacy of cancer therapeutics in mouse models is a critical step in treatment development. However, low-resolution measurement tools and small sample sizes make determining drug efficacy in vivo a difficult and time-intensive task. Here, we present a commercially scalable wearable electronic strain sensor that automates the in vivo testing of cancer therapeutics by continuously monitoring the micrometer-scale progression or regression of subcutaneously implanted tumors at the minute time scale. In two in vivo cancer mouse models, our sensor discerned differences in tumor volume dynamics between drug- and vehicle-treated tumors within 5 hours following therapy initiation. These short-term regression measurements were validated through histology, and caliper and bioluminescence measurements taken over weeklong treatment periods demonstrated the correlation with longer-term treatment response. We anticipate that real-time tumor regression datasets could help expedite and automate the process of screening cancer therapies in vivo.


Assuntos
Cognição , Eletrônica , Animais , Modelos Animais de Doenças , Medições Luminescentes , Camundongos
6.
Nat Nanotechnol ; 17(9): 1015-1022, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35995855

RESUMO

Current clinical brain tumour therapy practices are based on tumour resection and post-operative chemotherapy or X-ray radiation. Resection requires technically challenging open-skull surgeries that can lead to major neurological deficits and, in some cases, death. Treatments with X-ray and chemotherapy, on the other hand, cause major side-effects such as damage to surrounding normal brain tissues and other organs. Here we report the development of an integrated nanomedicine-bioelectronics brain-machine interface that enables continuous and on-demand treatment of brain tumours, without open-skull surgery and toxicological side-effects on other organs. Near-infrared surface plasmon characteristics of our gold nanostars enabled the precise treatment of deep brain tumours in freely behaving mice. Moreover, the nanostars' surface coating enabled their selective diffusion in tumour tissues after intratumoral administration, leading to the exclusive heating of tumours for treatment. This versatile remotely controlled and wireless method allows the adjustment of nanoparticles' photothermal strength, as well as power and wavelength of the therapeutic light, to target tumours in different anatomical locations within the brain.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Fotoquimioterapia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Ouro/uso terapêutico , Camundongos , Nanomedicina Teranóstica
7.
Blood Adv ; 6(16): 4782-4792, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35790103

RESUMO

Allogeneic hematopoietic cell transplantation (HCT) is a well-established and potentially curative treatment for a broad range of hematological diseases, bone marrow failure states, and genetic disorders. Acute graft-versus-host disease (GvHD), mediated by donor T cells attacking host tissues, still represents a major cause of morbidity and mortality following allogeneic HCT. Current approaches to diagnosis of gastrointestinal acute GvHD rely on clinical and pathological criteria that manifest at late stages of disease. New strategies allowing for GvHD prediction and diagnosis, prior to symptom onset, are urgently needed. Noninvasive antibody-based positron emission tomography (PET) (immunoPET) imaging of T-cell activation post-allogeneic HCT is a promising strategy toward this goal. In this work, we identified inducible T-cell costimulator (ICOS) as a potential immunoPET target for imaging activated T cells during GvHD. We demonstrate that the use of the Zirconium-89-deferoxamine-ICOS monoclonal antibody PET tracer allows in vivo visualization of donor T-cell activation in target tissues, namely the intestinal tract, in a murine model of acute GvHD. Importantly, we demonstrate that the Zirconium-89-deferoxamine-ICOS monoclonal antibody PET tracer does not affect GvHD pathogenesis or the graft-versus-tumor (GvT) effect of the transplant procedure. Our data identify ICOS immunoPET as a promising strategy for early GvHD diagnosis prior to the appearance of clinical symptoms.


Assuntos
Doença Enxerto-Hospedeiro , Proteína Coestimuladora de Linfócitos T Induzíveis , Linfócitos T , Animais , Anticorpos Monoclonais , Desferroxamina , Diagnóstico Precoce , Doença Enxerto-Hospedeiro/diagnóstico por imagem , Proteína Coestimuladora de Linfócitos T Induzíveis/análise , Camundongos , Tomografia por Emissão de Pósitrons , Transplante Homólogo/efeitos adversos
8.
ACS Cent Sci ; 8(5): 590-602, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35647285

RESUMO

Longitudinal multimodal imaging presents unique opportunities for noninvasive surveillance and prediction of treatment response to cancer immunotherapy. In this work we first designed a novel granzyme B activated self-assembly small molecule, G-SNAT, for the assessment of cytotoxic T lymphocyte mediated cancer cell killing. G-SNAT was found to specifically detect the activity of granzyme B within the cytotoxic granules of activated T cells and engaged cancer cells in vitro. In lymphoma tumor-bearing mice, the retention of cyanine 5 labeled G-SNAT-Cy5 correlated to CAR T cell mediated granzyme B exocytosis and tumor eradication. In colorectal tumor-bearing transgenic mice with hematopoietic cells expressing firefly luciferase, longitudinal bioluminescence and fluorescence imaging revealed that after combination treatment of anti-PD-1 and anti-CTLA-4, the dynamics of immune cell trafficking, tumor infiltration, and cytotoxic activity predicted the therapeutic outcome before tumor shrinkage was evident. These results support further development of G-SNAT for imaging early immune response to checkpoint blockade and CAR T-cell therapy in patients and highlight the utility of multimodality imaging for improved mechanistic insights into cancer immunotherapy.

9.
Biomedicines ; 10(3)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35327423

RESUMO

Biomarkers can potentially help in the detection and prognosis of diseases such as cancer, its recurrence, predicting response to therapy, and monitoring of response during and/or after treatment. Endogenous tumor blood biomarkers suffer from low concentrations that are not distinguishable from background noise and, if identified, the localization of the biomarker production site is not known. The use of exogenously introduced or artificial biomarkers can eliminate these issues. In this study, we show that cancer cells can be made to produce an artificial secreted microRNA (Sec-miR) that can be detected in media from cells in culture, and from both blood and urine in living mice. In culture, we show that chaining a number of Sec-miR sequences in a plasmid and transfecting cells with the plasmids could increase Sec-miR secretion as the number of sequences increases. Tumor induction in mice with a stably transfected HeLa cell line shows the presence and significant increase in the Sec-miR with time and tumor growth in plasma (p < 0.001, R2 = 0.5542). The relative half-life of the Sec-miR was seen to be 1.2 h in the plasma of living mice and was seen to appear in urine within 12 h. The transgene for the Sec-miR within a minicircle was introduced via the tail-vein into subcutaneous tumor-bearing mice. As the tumor growth increased with time, further in vivo transfection of the Sec-miR minicircles showed an increase in Sec-miR in both plasma and urine (R2 = 0.4546). This study demonstrated that an exogenous Sec-miR biomarker would allow for early tumor detection using in vitro diagnostics techniques.

10.
Science ; 375(6586): eaay9040, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35298272

RESUMO

Survival improves when cancer is detected early. However, ~50% of cancers are at an advanced stage when diagnosed. Early detection of cancer or precancerous change allows early intervention to try to slow or prevent cancer development and lethality. To achieve early detection of all cancers, numerous challenges must be overcome. It is vital to better understand who is at greatest risk of developing cancer. We also need to elucidate the biology and trajectory of precancer and early cancer to identify consequential disease that requires intervention. Insights must be translated into sensitive and specific early detection technologies and be appropriately evaluated to support practical clinical implementation. Interdisciplinary collaboration is key; advances in technology and biological understanding highlight that it is time to accelerate early detection research and transform cancer survival.


Assuntos
Detecção Precoce de Câncer , Neoplasias/diagnóstico , Biomarcadores Tumorais , Carcinogênese , Técnicas e Procedimentos Diagnósticos , Suscetibilidade a Doenças , Feminino , Humanos , Masculino , Neoplasias/patologia , Neoplasias/fisiopatologia , Medição de Risco , Sensibilidade e Especificidade
11.
BMC Complement Med Ther ; 22(1): 58, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255889

RESUMO

BACKGROUND: Gastric signet ring cell carcinoma (SRCC) is an aggressive gastric adenocarcinoma with a poor prognosis when diagnosed at an advanced stage. As alternative medicine, two natural supplements (ascorbate (AA) and sodium alpha lipoate (LA)) have been shown to inhibit various cancers with mild side effects. METHODS: These two natural supplements and a series of combinations (AA&LA, AA+LA and LA + AA) were incubated with non-SRCC cells (GPM-1), patient-derived gastric origin SRCC (GPM-2), gastric-origin SRCCs (HSC-39 and KATO-3), human pancreatic (MIA PaCa-2) and ovarian (SKOV-3) cells for evaluating their therapeutic effects. Moreover, these treatments were applied in 3D-cultured organoids to reveal the feasibility of these approaches for in vivo study. RESULTS: Analyzing their antioxidant capabilities and dose-response curves, we observed that all four gastric cell lines, including three patient-derived cell lines were sensitive to ascorbate (~ 10 mM). The influence of ascorbate incubation time was studied, with a 16-h incubation found to be optimal for in vitro studies. Moreover, a simultaneous combination of AA and LA (AA&LA) did not significantly inhibit cell proliferation, while prior LA treatment increased the growth inhibition of AA therapy (LA + AA). Anti-cancer efficacy of AA was further confirmed in 3D-cultured SRCC (KATO-3) organoids. CONCLUSIONS: This study highlights the potential of AA and LA + AA in treating gastric origin SRCC, and demonstrates the influence of order in which the drugs are administered.


Assuntos
Adenocarcinoma , Carcinoma de Células em Anel de Sinete , Terapias Complementares , Neoplasias Gástricas , Carcinoma de Células em Anel de Sinete/tratamento farmacológico , Carcinoma de Células em Anel de Sinete/patologia , Humanos , Sódio , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia
12.
Radiology ; 303(3): 620-631, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35191738

RESUMO

Background The PET tracer (4S)-4-(3-[18F]fluoropropyl)-l-glutamate (18F-FSPG) targets the system xC- cotransporter, which is overexpressed in various tumors. Purpose To assess the role of 18F-FSPG PET/CT in intracranial malignancies. Materials and Methods Twenty-six patients (mean age, 54 years ± 12; 17 men; 48 total lesions) with primary brain tumors (n = 17) or brain metastases (n = 9) were enrolled in this prospective, single-center study (ClinicalTrials.gov identifier: NCT02370563) between November 2014 and March 2016. A 30-minute dynamic brain 18F-FSPG PET/CT scan and a static whole-body (WB) 18F-FSPG PET/CT scan at 60-75 minutes were acquired. Moreover, all participants underwent MRI, and four participants underwent fluorine 18 (18F) fluorodeoxyglucose (FDG) PET imaging. PET parameters and their relative changes were obtained for all lesions. Kinetic modeling was used to estimate the 18F-FSPG tumor rate constants using the dynamic and dynamic plus WB PET data. Imaging parameters were correlated to lesion outcomes, as determined with follow-up MRI and/or pathologic examination. The Mann-Whitney U test or Student t test was used for group mean comparisons. Receiver operating characteristic curve analysis was used for performance comparison of different decision measures. Results 18F-FSPG PET/CT helped identify all 48 brain lesions. The mean tumor-to-background ratio (TBR) on the whole-brain PET images at the WB time point was 26.6 ± 24.9 (range: 2.6-150.3). When 18F-FDG PET was performed, 18F-FSPG permitted visualization of non-18F-FDG-avid lesions or allowed better lesion differentiation from surrounding tissues. In participants with primary brain tumors, the predictive accuracy of the relative changes in influx rate constant Ki and maximum standardized uptake value to discriminate between poor and good lesion outcomes were 89% and 81%, respectively. There were significant differences in the 18F-FSPG uptake curves of lesions with good versus poor outcomes in the primary brain tumor group (P < .05) but not in the brain metastases group. Conclusion PET/CT imaging with (4S)-4-(3-[18F]fluoropropyl)-l-glutamate (18F-FSPG) helped detect primary brain tumors and brain metastases with a high tumor-to-background ratio. Relative changes in 18F-FSPG uptake with multi-time-point PET appear to be helpful in predicting lesion outcomes. Clinical trial registration no. NCT02370563 © RSNA, 2022 Online supplemental material is available for this article.


Assuntos
Neoplasias Encefálicas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Encefálicas/diagnóstico por imagem , Fluordesoxiglucose F18 , Ácido Glutâmico , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Estudos Prospectivos , Compostos Radiofarmacêuticos
13.
Eur J Nucl Med Mol Imaging ; 50(1): 184-193, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34729628

RESUMO

PURPOSE: A novel cystine-knot peptide-based PET radiopharmaceutical, 18F-FP-R01-MG-F2 (knottin), was developed to selectively bind to human integrin αvß6 which is overexpressed in pancreatic cancer. The purpose of this study is to evaluate the safety, biodistribution, dosimetry, and lesion uptake of 18F-FP-R01-MG-F2 in patients with pancreatic cancer. METHODS: Fifteen patients (6 men, 9 women) with histologically confirmed pancreatic cancer were prospectively enrolled and underwent knottin PET/CT between March 2017 and February 2021 (ClinicalTrials.gov Identifier NCT02683824). Vital signs and laboratory results were collected before and after the imaging scans. Maximum standardized uptake values (SUVmax) and mean SUV (SUVmean) were measured in 24 normal tissues and pancreatic cancer lesions for each patient. From the biodistribution data, the organ doses and whole-body effective dose were calculated using OLINDA/EXM software. RESULTS: There were no significant changes in vital signs or laboratory values that qualified as adverse events or serious adverse events. At 1 h post-injection, areas of high 18F-FP-R01-MG-F2 uptake included the pituitary gland, stomach, duodenum, kidneys, and bladder (average SUVmean: 9.7-14.5). Intermediate uptake was found in the normal pancreas (average SUVmean: 4.5). Mild uptake was found in the lungs and liver (average SUVmean < 1.0). The effective dose was calculated to be 2.538 × 10-2 mSv/MBq. Knottin PET/CT detected all known pancreatic tumors in the 15 patients, although it did not detect small peri-pancreatic lymph nodes of less than 1 cm in short diameter in two of three patients who had lymph node metastases at surgery. Knottin PET/CT detected distant metastases in the lungs (n = 5), liver (n = 4), and peritoneum (n = 2), confirmed by biopsy and/or contrast-enhanced CT. CONCLUSION: 18F-FP-R01-MG-F2 is a safe PET radiopharmaceutical with an effective dose comparable to other diagnostic agents. Evaluation of the primary pancreatic cancer and distant metastases with 18F-FP-R01-MG-F2 PET is feasible, but larger studies are required to define the role of this approach. TRIAL REGISTRATION: NCT02683824.


Assuntos
Miniproteínas Nó de Cistina , Neoplasias Pancreáticas , Feminino , Humanos , Masculino , Cistina/metabolismo , Miniproteínas Nó de Cistina/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/metabolismo , Peptídeos/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Distribuição Tecidual , Neoplasias Pancreáticas
14.
Mol Imaging Biol ; 24(2): 280-287, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34846678

RESUMO

PURPOSE: Current checkpoint inhibitor immunotherapy strategies in glioblastoma are challenged by mechanisms of resistance including an immunosuppressive tumor microenvironment. T cell immunoglobulin domain and mucin domain 3 (TIM3) is a late-phase checkpoint receptor traditionally associated with T cell exhaustion. We apply fluorescent imaging techniques to explore feasibility of in vivo visualization of the immune state in a glioblastoma mouse model. PROCEDURES: TIM3 monoclonal antibody was conjugated to a near-infrared fluorescent dye, IRDye-800CW (800CW). The TIM3 experimental conjugate and isotype control were assessed for specificity with immunofluorescent staining and flow cytometry in murine cell lines (GL261 glioma and RAW264.7 macrophages). C57BL/6 mice with orthotopically implanted GL261 cells were imaged in vivo over 4 days after intravenous TIM3-800CW injection to assess tumor-specific uptake. Cell-specific uptake was then assessed on histologic sections. RESULTS: The experimental TIM3-800CW, but not its isotype control, bound to RAW264.7 macrophages in vitro. Specificity to RAW264.7 macrophages and not GL261 tumor cells was quantitatively confirmed with the corresponding clone of TIM3 on flow cytometry. In vivo fluorescence imaging of the 800CW signal was localized to the intracranial tumor and significantly higher for the TIM3-800CW cohort, relative to non-targeting isotype control, immediately after tail vein injection and for up to 48 h after injection. Resected organs of tumor bearing mice showed significantly higher uptake in the liver and spleen. TIM3-800CW was seen to co-stain with CD3 (13%), CD11b (29%), and CD206 (26%). CONCLUSIONS: We propose fluorescent imaging of immune cell imaging as a potential strategy for monitoring and localizing immunologically relevant foci in the setting of brain tumors. Alternative markers and target validation will further clarify the temporal relationship of immunosuppressive effector cells throughout glioma resistance.


Assuntos
Corantes Fluorescentes , Glioblastoma , Animais , Linhagem Celular Tumoral , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
15.
ACS Nano ; 15(12): 19956-19969, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34797988

RESUMO

In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has provided a number of multiplexing channels up to three, Raman imaging with surface-enhanced Raman scattering (SERS) nanoparticles was suggested to offer higher multiplexing capability originating from their narrow spectral width. However, in vivo multiplexed SERS imaging is still in its infancy for multichannel visualization of tumors, which require both sufficient multiplicity and high sensitivity concurrently. Here we create multispectral palettes of gold multicore-near-infrared (NIR) resonant Raman dyes-silica shell SERS (NIR-SERRS) nanoparticle oligomers and demonstrate noninvasive and five-plex SERS imaging of the nanoparticle accumulation in tumors of living mice. We perform the five-plex ratiometric imaging of tumors by varying the administered ratio of the nanoparticles, which simulates the detection of multiple biomarkers with different expression levels in the tumor environment. Furthermore, since this method does not require the excision of tumor tissues at the imaging condition, we perform noninvasive and longitudinal imaging of the five-color nanoparticles in the tumors, which is not feasible with current ex vivo multiplexed tissue analysis platforms. Our work surpasses the multiplicity limit of previous preclinical tumor imaging methods while keeping enough sensitivity for tumor-targeted in vivo imaging and could enable the noninvasive assessment of multiple biological targets within the tumor microenvironment in living subjects.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Animais , Diagnóstico por Imagem , Ouro , Camundongos , Neoplasias/diagnóstico por imagem , Análise Espectral Raman , Microambiente Tumoral
16.
Clin Cancer Res ; 27(23): 6467-6478, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475101

RESUMO

PURPOSE: Pyruvate kinase M2 (PKM2) catalyzes the final step in glycolysis, a key process of cancer metabolism. PKM2 is preferentially expressed by glioblastoma (GBM) cells with minimal expression in healthy brain. We describe the development, validation, and translation of a novel PET tracer to study PKM2 in GBM. We evaluated 1-((2-fluoro-6-[18F]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([18F]DASA-23) in cell culture, mouse models of GBM, healthy human volunteers, and patients with GBM. EXPERIMENTAL DESIGN: [18F]DASA-23 was synthesized with a molar activity of 100.47 ± 29.58 GBq/µmol and radiochemical purity >95%. We performed initial testing of [18F]DASA-23 in GBM cell culture and human GBM xenografts implanted orthotopically into mice. Next, we produced [18F]DASA-23 under FDA oversight, and evaluated it in healthy volunteers and a pilot cohort of patients with glioma. RESULTS: In mouse imaging studies, [18F]DASA-23 clearly delineated the U87 GBM from surrounding healthy brain tissue and had a tumor-to-brain ratio of 3.6 ± 0.5. In human volunteers, [18F]DASA-23 crossed the intact blood-brain barrier and was rapidly cleared. In patients with GBM, [18F]DASA-23 successfully outlined tumors visible on contrast-enhanced MRI. The uptake of [18F]DASA-23 was markedly elevated in GBMs compared with normal brain, and it identified a metabolic nonresponder within 1 week of treatment initiation. CONCLUSIONS: We developed and translated [18F]DASA-23 as a new tracer that demonstrated the visualization of aberrantly expressed PKM2 for the first time in human subjects. These results warrant further clinical evaluation of [18F]DASA-23 to assess its utility for imaging therapy-induced normalization of aberrant cancer metabolism.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/patologia , Compostos de Diazônio , Glioblastoma/patologia , Glicólise , Humanos , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Piruvato Quinase/metabolismo , Ácidos Sulfanílicos
17.
Clin Cancer Res ; 27(23): 6445-6456, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34548318

RESUMO

PURPOSE: Immunotherapy is a promising approach for many oncological malignancies, including glioblastoma, however, there are currently no available tools or biomarkers to accurately assess whole-body immune responses in patients with glioblastoma treated with immunotherapy. Here, the utility of OX40, a costimulatory molecule mainly expressed on activated effector T cells known to play an important role in eliminating cancer cells, was evaluated as a PET imaging biomarker to quantify and track response to immunotherapy. EXPERIMENTAL DESIGN: A subcutaneous vaccination approach of CpG oligodeoxynucleotide, OX40 mAb, and tumor lysate at a remote site in a murine orthotopic glioma model was developed to induce activation of T cells distantly while monitoring their distribution in stimulated lymphoid organs with respect to observed therapeutic effects. To detect OX40-positive T cells, we utilized our in-house-developed 89Zr-DFO-OX40 mAb and in vivo PET/CT imaging. RESULTS: ImmunoPET with 89Zr-DFO-OX40 mAb revealed strong OX40-positive responses with high specificity, not only in the nearest lymph node from vaccinated area (mean, 20.8%ID/cc) but also in the spleen (16.7%ID/cc) and the tumor draining lymph node (11.4%ID/cc). When the tumor was small (<106 p/sec/cm2/sr in bioluminescence imaging), a high number of responders and percentage shrinkage in tumor signal was indicated after only a single cycle of vaccination. CONCLUSIONS: The results highlight the promise of clinically translating cancer vaccination as a potential glioma therapy, as well as the benefits of monitoring efficacy of these treatments using immunoPET imaging of T-cell activation.


Assuntos
Glioblastoma , Animais , Linhagem Celular Tumoral , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Humanos , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons , Linfócitos T/patologia
18.
Cancers (Basel) ; 13(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34439132

RESUMO

Glypican-3 (GPC3) is an attractive diagnostic marker for hepatocellular carcinoma (HCC). We previously reported the potential of an 89Zr-labeled murine anti-GPC3 antibody (clone 1G12) for immunoPET imaging of HCC in orthotopic patient-derived xenograft (PDX) mouse models. We now humanized the murine antibody by complementarity determining region (CDR) grafting, to allow its clinical translation for human use. The engineered humanized anti-GPC3 antibody, clone H3K3, retained comparable binding affinity and specificity to human GPC3. H3K3 was conjugated with desferrioxamine (Df) and radiolabeled with 89Zr to produce the PET/CT tracer 89Zr-Df-H3K3. When injected into GPC3-expressing orthotopic HCC PDX in NOD SCID Gamma (NSG) mice, 89Zr-Df-H3K3 showed specific high uptake into the orthotopic PDX and minimal, non-specific uptake into the non-tumor bearing liver. Specificity was demonstrated by significantly higher uptake of 89Zr-Df-H3K3 into the non-blocked PDX mice, compared with the blocked PDX mice (which received prior injection of 100 mg of unlabeled H3K3). Region of interest (ROI) analysis showed that the PDX/non-tumor liver ratio was highest (mean ± SD: 3.4 ± 0.31) at 168 h post injection; this ratio was consistent with biodistribution studies at the same time point. Thus, our humanized anti-GPC3 antibody, H3K3, shows encouraging potential for use as an immunoPET tracer for diagnostic imaging of HCC patients.

19.
PLoS One ; 16(7): e0254153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34324495

RESUMO

Newer data platforms offer increased opportunity to share multidimensional health data with research participants, but the preferences of participants for which data to receive and how is evolving. Our objective is to describe the preferences and expectations of participants for the return of individual research results within Project Baseline Health Study (PBHS). The PBHS is an ongoing, multicenter, longitudinal cohort study with data from four initial enrollment sites. PBHS participants are recruited from the general population along with groups enriched for heart disease and cancer disease risk. Cross-sectional data on return of results were collected in 2017-2018 from an (1) in-person enrollment survey (n = 1,890), (2) benchmark online survey (n = 1,059), and (3) participant interviews (n = 21). The main outcomes included (1) preferences for type of information to be added next to returned results, (2) participant plans for sharing returned results with a non-study clinician, and (3) choice to opt-out of receiving genetic results. Results were compared by sociodemographic characteristics. Enrollment and benchmark survey respondents were 57.1% and 53.5% female, and 60.0% and 66.2% white, respectively. Participants preferred the following data types be added to returned results in the future: genetics (29.9%), heart imaging, (16.4%), study watch (15.8%), and microbiome (13.3%). Older adults (OR 0.60, 95% CI: 0.41-0.87) were less likely to want their genetic results returned next. Forty percent of participants reported that they would not share all returned results with their non-study clinicians. Black (OR 0.64, 95% CI 0.43-0.95) and Asian (OR 0.47, 95% CI 0.30-0.73) participants were less likely, and older participants more likely (OR 1.45-1.61), to plan to share all results with their clinician than their counterparts. At enrollment, 5.8% of participants opted out of receiving their genetics results. The study showed that substantial heterogeneity existed in participant's preferences and expectations for return of results, and variations were related to sociodemographic characteristics.


Assuntos
Disseminação de Informação , Preferência do Paciente , Idoso , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
20.
JCI Insight ; 6(13)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34236044

RESUMO

Diagnosis of organ transplant rejection relies upon biopsy approaches to confirm alloreactive T cell infiltration in the graft. Immune molecular monitoring is under investigation to screen for rejection, though these techniques have suffered from low specificity and lack of spatial information. ImmunoPET utilizing antibodies conjugated to radioisotopes has the potential to improve early and accurate detection of graft rejection. ImmunoPET is capable of noninvasively visualizing the dynamic distribution of cells expressing specific immune markers in the entire body over time. In this work, we identify and characterize OX40 as a surrogate biomarker for alloreactive T cells in organ transplant rejection and monitor its expression by utilizing immunoPET. In a dual murine heart transplant model that has both syngeneic and allogeneic hearts engrafted in bilateral ear pinna on the recipients, OX40 immunoPET clearly depicted alloreactive T cells in the allograft and draining lymph node that were not observed in their respective isograft counterparts. OX40 immunoPET signals also reflected the subject's immunosuppression level with tacrolimus in this study. OX40 immunoPET is a promising approach that may bridge molecular monitoring and morphological assessment for improved transplant rejection diagnosis.


Assuntos
Rejeição de Enxerto , Transplante de Coração/efeitos adversos , Monitorização Imunológica/métodos , Ligante OX40 , Tomografia por Emissão de Pósitrons/métodos , Linfócitos T/imunologia , Animais , Antígenos de Diferenciação/análise , Biomarcadores/análise , Diagnóstico Precoce , Perfilação da Expressão Gênica/métodos , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/imunologia , Humanos , Programas de Rastreamento/métodos , Camundongos , Ligante OX40/análise , Ligante OX40/imunologia , Radioimunoensaio/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA