Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Proteome Res ; 22(9): 2925-2935, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37606205

RESUMO

Sickle cell disease and ß-thalassemia represent hemoglobinopathies arising from dysfunctional or underproduced ß-globin chains, respectively. In both diseases, red blood cell injury and anemia are the impetus for end organ injury. Because persistent erythrophagocytosis is a hallmark of these genetic maladies, it is critical to understand how macrophage phenotype polarizations in tissue compartments can inform on disease progression. Murine models of sickle cell disease and ß-thalassemia allow for a basic understanding of the mechanisms and provide for translation to human disease. A multi-omics approach to understanding the macrophage metabolism and protein changes in two murine models of ß-globinopathy was performed on peripheral blood mononuclear cells as well as spleen and liver macrophages isolated from Berkley sickle cell disease (Berk-ss) and heterozygous B1/B2 globin gene deletion (Hbbth3/+) mice. The results from these experiments revealed that the metabolome and proteome of macrophages are polarized to a distinct phenotype in Berk-ss and Hbbth3/+ compared with each other and their common-background mice (C57BL6/J). Further, spleen and liver macrophages revealed distinct disease-specific phenotypes, suggesting that macrophages become differentially polarized and reprogrammed within tissue compartments. We conclude that tissue recruitment, polarization, and metabolic and proteomic reprogramming of macrophages in Berk-ss and Hbbth3/+ mice may be relevant to disease progression in other tissue.


Assuntos
Anemia Falciforme , Talassemia beta , Humanos , Animais , Camundongos , Monócitos , Talassemia beta/genética , Leucócitos Mononucleares , Proteômica , Anemia Falciforme/genética , Macrófagos , Progressão da Doença
2.
J Trauma Acute Care Surg ; 95(6): 925-934, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37405823

RESUMO

BACKGROUND: The coagulopathy of traumatic brain injury (TBI) remains poorly understood. Contradictory descriptions highlight the distinction between systemic and local coagulation, with descriptions of systemic hypercoagulability despite intracranial hypocoagulopathy. This perplexing coagulation profile has been hypothesized to be due to tissue factor release. The objective of this study was to assess the coagulation profile of TBI patients undergoing neurosurgical procedures. We hypothesize that dura violation is associated with higher tissue factor and conversion to a hypercoagulable profile and unique metabolomic and proteomic phenotype. METHODS: This is a prospective, observational cohort study of all adult TBI patients at an urban, Level I trauma center who underwent a neurosurgical procedure from 2019 to 2021. Whole blood samples were collected before and then 1 hour following dura violation. Citrated rapid and tissue plasminogen activator (tPA) thrombelastography (TEG) were performed, in addition to measurement of tissue factory activity, metabolomics, and proteomics. RESULTS: Overall, 57 patients were included. The majority (61%) were male, the median age was 52 years, 70% presented after blunt trauma, and the median Glasgow Coma Score was 7. Compared with pre-dura violation, post-dura violation blood demonstrated systemic hypercoagulability, with a significant increase in clot strength (maximum amplitude of 74.4 mm vs. 63.5 mm; p < 0.0001) and a significant decrease in fibrinolysis (LY30 on tPAchallenged TEG of 1.4% vs. 2.6%; p = 0.04). There were no statistically significant differences in tissue factor. Metabolomics revealed notable increases in metabolites involved in late glycolysis, cysteine, and one-carbon metabolites, and metabolites involved in endothelial dysfunction/arginine metabolism/responses to hypoxia. Proteomics revealed notable increase in proteins related to platelet activation and fibrinolysis inhibition. CONCLUSION: A systemic hypercoagulability is observed in TBI patients, characterized by increased clot strength and decreased fibrinolysis and a unique metabolomic and proteomics phenotype independent of tissue factor levels.


Assuntos
Transtornos da Coagulação Sanguínea , Lesões Encefálicas Traumáticas , Trombofilia , Adulto , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Ativador de Plasminogênio Tecidual , Estudos de Coortes , Proteômica , Tromboplastina , Trombofilia/diagnóstico , Trombofilia/etiologia , Transtornos da Coagulação Sanguínea/diagnóstico , Transtornos da Coagulação Sanguínea/etiologia , Lesões Encefálicas Traumáticas/complicações , Tromboelastografia/métodos
3.
Haematologica ; 108(9): 2343-2357, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37021547

RESUMO

Outcomes for patients with acute myeloid leukemia (AML) remain poor due to the inability of current therapeutic regimens to fully eradicate disease-initiating leukemia stem cells (LSC). Previous studies have demonstrated that oxidative phosphorylation (OXPHOS) is an essential process that is targetable in LSC. Sirtuin 3 (SIRT3), a mitochondrial deacetylase with a multi-faceted role in metabolic regulation, has been shown to regulate OXPHOS in cancer models; however, it has not yet been studied in the context of LSC. Thus, we sought to identify if SIRT3 is important for LSC function. Using RNAi and a SIRT3 inhibitor (YC8-02), we demonstrate that SIRT3 is a critical target for the survival of primary human LSC but is not essential for normal human hematopoietic stem and progenitor cell function. In order to elucidate the molecular mechanisms by which SIRT3 is essential in LSC we combined transcriptomic, proteomic, and lipidomic approaches, showing that SIRT3 is important for LSC function through the regulation of fatty acid oxidation (FAO) which is required to support OXPHOS and ATP production in human LSC. Further, we discovered two approaches to further sensitize LSC to SIRT3 inhibition. First, we found that LSC tolerate the toxic effects of fatty acid accumulation induced by SIRT3 inhibition by upregulating cholesterol esterification. Disruption of cholesterol homeostasis sensitizes LSC to YC8-02 and potentiates LSC death. Second, SIRT3 inhibition sensitizes LSC to the BCL-2 inhibitor venetoclax. Together, these findings establish SIRT3 as a regulator of lipid metabolism and potential therapeutic target in primitive AML cells.


Assuntos
Leucemia Mieloide Aguda , Sirtuína 3 , Humanos , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Proteômica , Células-Tronco Neoplásicas/metabolismo , Metabolismo dos Lipídeos , Homeostase , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Ácidos Graxos/uso terapêutico , Colesterol
4.
Blood Adv ; 7(8): 1379-1393, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36469038

RESUMO

Blood storage promotes the rapid depletion of red blood cell (RBC) high-energy adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (DPG), which are critical regulators of erythrocyte physiology and function, as well as oxygen kinetics and posttransfusion survival. Sphingosine-1-phosphate (S1P) promotes fluxes through glycolysis. We hypothesized that S1P supplementation to stored RBC units would improve energy metabolism and posttransfusion recovery. We quantified S1P in 1929 samples (n = 643, storage days 10, 23, and 42) from the REDS RBC Omics study. We then supplemented human and murine RBCs from good storer (C57BL6/J) and poor storer strains (FVB) with S1P (1, 5, and 10 µM) before measurements of metabolism and posttransfusion recovery. Similar experiments were repeated for mice with genetic ablation of the S1P biosynthetic pathway (sphingosine kinase 1 [Sphk1] knockout [KO]). Sample analyses included metabolomics at steady state, tracing experiments with 1,2,3-13C3-glucose, proteomics, and analysis of end-of-storage posttransfusion recovery, under normoxic and hypoxic storage conditions. Storage promoted decreases in S1P levels, which were the highest in units donated by female or older donors. Supplementation of S1P to human and murine RBCs boosted the steady-state levels of glycolytic metabolites and glycolytic fluxes, ie the generation of ATP and DPG, at the expense of the pentose phosphate pathway. Lower posttransfusion recovery was observed upon S1P supplementation. All these phenomena were reversed in Sphk1 KO mice or with hypoxic storage. S1P is a positive regulator of energy metabolism and a negative regulator of antioxidant metabolism in stored RBCs, resulting in lower posttransfusion recoveries in murine models.


Assuntos
Transfusão de Eritrócitos , Eritrócitos , Humanos , Feminino , Camundongos , Animais , Transfusão de Eritrócitos/métodos , Eritrócitos/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/metabolismo , Camundongos Knockout , Hipóxia/metabolismo
5.
Blood Transfus ; 21(1): 50-61, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36346885

RESUMO

BACKGROUND: The Red blood cell (RBC) storage lesion results in decreased circulation and function of transfused RBCs. Elevated oxidant stress and impaired energy metabolism are a hallmark of the storage lesion in both human and murine RBCs. Although human studies don't suffer concerns that findings may not translate, they do suffer from genetic and environmental variability amongst subjects. Murine models can control for genetics, environment, and much interventional experimentation can be carried out in mice that is neither technically feasible nor ethical in humans. However, murine models are only useful to the extent that they have similar biology to humans. Hypoxic storage has been shown to mitigate the storage lesion in human RBCs, but has not been investigated in mice. MATERIALS AND METHODS: RBCs from a C57BL6/J mouse strain were stored under normoxic (untreated) or hypoxic conditions (SO2 ~ 26%) for 1h, 7 and 12 days. Samples were tested for metabolomics at steady state, tracing experiments with 1,2,3-13C3-glucose, proteomics and end of storage post transfusion recovery. RESULTS: Hypoxic storage improved post-transfusion recovery and energy metabolism, including increased steady state and 13C3-labeled metabolites from glycolysis, high energy purines (adenosine triphosphate) and 2,3-diphospholgycerate. Hypoxic storage promoted glutaminolysis, increased glutathione pools, and was accompanied by elevation in the levels of free fatty acids and acyl-carnitines. DISCUSSION: This study isolates hypoxia, as a single independent variable, and shows similar effects as seen in human studies. These findings also demonstrate the translatability of murine models for hypoxic RBC storage and provide a pre-clinical platform for ongoing study.


Assuntos
Transfusão de Eritrócitos , Eritrócitos , Camundongos , Humanos , Animais , Metabolismo Energético , Hipóxia/metabolismo , Glicólise , Preservação de Sangue/métodos
6.
ACS Chem Biol ; 17(7): 1853-1865, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35796308

RESUMO

Biological therapeutics represent an increasing and critical component of newly approved drugs; however, the inability to deliver biologics intracellularly in a controlled manner remains a major limitation. We have developed a semi-synthetic, tunable phage-like particle (PLP) platform derived from bacteriophage λ. The shell surface can be decorated with small-molecule, biological and synthetic moieties, alone or in combination and in defined ratios. Here, we demonstrate that the platform can be used to deliver biological macromolecules intracellularly and in a controlled manner. Ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that has been widely recognized as an ideal target for the treatment of a variety of cancers. Recently, UbV.7.2, a novel biologic derived from the ubiquitin scaffold, was developed for inhibition of USP7, but issues remain in achieving efficient and controlled intracellular delivery of the biologic. We have shown that decoration of PLPs with trastuzumab (Trz), a HER2-targeted therapeutic used in the treatment of various cancers, results in specific targeting and uptake of Trz-PLPs into HER2-overexpressing breast cancer cells. By simultaneously decorating PLPs with Trz and UbV.7.2, we now show that these particles are also internalized by HER2-positive cells, thus providing a means for intracellular delivery of the biologic in a controlled fashion. Internalized particles retain USP7 inhibition activity of UbV.7.2 and alter the metabolic and proteomic landscapes of these cells. This study demonstrates that the λ "designer nanoparticles" represent a powerful system for the intracellular delivery of biologics in a defined dose.


Assuntos
Produtos Biológicos , Neoplasias da Mama , Nanopartículas , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Proteômica , Trastuzumab , Peptidase 7 Específica de Ubiquitina
7.
Ann Surg ; 276(6): e944-e954, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33214479

RESUMO

OBJECTIVES: Identify the metabolites that are increased in the plasma of severely injured patients that developed ARDS versus severely injured patients that did not, and assay if these increased metabolites prime pulmonary sequestration of neutrophils (PMNs) and induce pulmonary sequestration in an animal model of ARDS. We hypothesize that metabolic derangement due to advanced shock in critically injured patients leads to the PMNs, which serves as the first event in the ARDS. Summary of Background Data: Intracellular metabolites accumulate in the plasma of severely injured patients. METHODS: Untargeted metabolomics profiling of 67 critically injured patients was completed to establish a metabolic signature associated with ARDS development. Metabolites that significantly increased were assayed for PMN priming activity in vitro. The metabolites that primed PMNs were tested in a 2-event animal model of ARDS to identify a molecular link between circulating metabolites and clinical risk for ARDS. RESULTS: After controlling for confounders, 4 metabolites significantly increased: creatine, dehydroascorbate, fumarate, and succinate in trauma patients who developed ARDS ( P < 0.05). Succinate alone primed the PMN oxidase in vitro at physiologically relevant levels. Intravenous succinate-induced PMN sequestration in the lung, a first event, and followed by intravenous lipopolysaccharide, a second event, resulted in ARDS in vivo requiring PMNs. SUCNR1 inhibition abrogated PMN priming, PMN sequestration, and ARDS. Conclusion: Significant increases in plasma succinate post-injury may serve as the first event in ARDS. Targeted inhibition of the SUCNR1 may decrease ARDS development from other disease states to prevent ARDS globally.


Assuntos
Sequestro Broncopulmonar , Síndrome do Desconforto Respiratório , Animais , Neutrófilos/metabolismo , Ácido Succínico/metabolismo , Sequestro Broncopulmonar/metabolismo , Pulmão
8.
Blood ; 139(4): 584-596, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34525179

RESUMO

Acute myeloid leukemia (AML) is characterized by the presence of leukemia stem cells (LSCs), and failure to fully eradicate this population contributes to disease persistence/relapse. Prior studies have characterized metabolic vulnerabilities of LSCs, which demonstrate preferential reliance on oxidative phosphorylation (OXPHOS) for energy metabolism and survival. In the present study, using both genetic and pharmacologic strategies in primary human AML specimens, we show that signal transducer and activator of transcription 3 (STAT3) mediates OXPHOS in LSCs. STAT3 regulates AML-specific expression of MYC, which in turn controls transcription of the neutral amino acid transporter gene SLC1A5. We show that genetic inhibition of MYC or SLC1A5 acts to phenocopy the impairment of OXPHOS observed with STAT3 inhibition, thereby establishing this axis as a regulatory mechanism linking STAT3 to energy metabolism. Inhibition of SLC1A5 reduces intracellular levels of glutamine, glutathione, and multiple tricarboxylic acid (TCA) cycle metabolites, leading to reduced TCA cycle activity and inhibition of OXPHOS. Based on these findings, we used a novel small molecule STAT3 inhibitor, which binds STAT3 and disrupts STAT3-DNA, to evaluate the biological role of STAT3. We show that STAT3 inhibition selectively leads to cell death in AML stem and progenitor cells derived from newly diagnosed patients and patients who have experienced relapse while sparing normal hematopoietic cells. Together, these findings establish a STAT3-mediated mechanism that controls energy metabolism and survival in primitive AML cells.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Leucemia Mieloide Aguda/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Sobrevivência Celular , Humanos , Células-Tronco Neoplásicas/citologia , Fosforilação Oxidativa , Células Tumorais Cultivadas
9.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649199

RESUMO

Interleukin-1ß (IL-1ß)-mediated inflammation suppresses antitumor immunity, leading to the generation of a tumor-permissive environment, tumor growth, and progression. Here, we demonstrate that nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in melanoma is linked to IL-1ß production, inflammation, and immunosuppression. Analysis of cancer genome datasets (TCGA and GTEx) revealed greater NLRP3 and IL-1ß expression in cutaneous melanoma samples (n = 469) compared to normal skin (n = 324), with a highly significant correlation between NLRP3 and IL-1ß (P < 0.0001). We show the formation of the NLRP3 inflammasome in biopsies of metastatic melanoma using fluorescent resonance energy transfer analysis for NLRP3 and apoptosis-associated speck-like protein containing a CARD. In vivo, tumor-associated NLRP3/IL-1 signaling induced expansion of myeloid-derived suppressor cells (MDSCs), leading to reduced natural killer and CD8+ T cell activity concomitant with an increased presence of regulatory T (Treg) cells in the primary tumors. Either genetic or pharmacological inhibition of tumor-derived NLRP3 by dapansutrile (OLT1177) was sufficient to reduce MDSCs expansion and to enhance antitumor immunity, resulting in reduced tumor growth. Additionally, we observed that the combination of NLRP3 inhibition and anti-PD-1 treatment significantly increased the antitumor efficacy of the monotherapy by limiting MDSC-mediated T cell suppression and tumor progression. These data show that NLRP3 activation in melanoma cells is a protumor mechanism, which induces MDSCs expansion and immune evasion. We conclude that inhibition of NLRP3 can augment the efficacy of anti-PD-1 therapy.


Assuntos
Melanoma Experimental/imunologia , Células Supressoras Mieloides/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteínas de Neoplasias/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas de Neoplasias/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia
10.
Cell Stem Cell ; 27(5): 748-764.e4, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32822582

RESUMO

We previously demonstrated that leukemia stem cells (LSCs) in de novo acute myeloid leukemia (AML) patients are selectively reliant on amino acid metabolism and that treatment with the combination of venetoclax and azacitidine (ven/aza) inhibits amino acid metabolism, leading to cell death. In contrast, ven/aza fails to eradicate LSCs in relapsed/refractory (R/R) patients, suggesting altered metabolic properties. Detailed metabolomic analysis revealed elevated nicotinamide metabolism in relapsed LSCs, which activates both amino acid metabolism and fatty acid oxidation to drive OXPHOS, thereby providing a means for LSCs to circumvent the cytotoxic effects of ven/aza therapy. Genetic and pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in nicotinamide metabolism, demonstrated selective eradication of R/R LSCs while sparing normal hematopoietic stem/progenitor cells. Altogether, these findings demonstrate that elevated nicotinamide metabolism is both the mechanistic basis for ven/aza resistance and a metabolic vulnerability of R/R LSCs.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Leucemia Mieloide Aguda , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco Neoplásicas , Niacinamida/farmacologia , Células-Tronco , Sulfonamidas
11.
Proc Natl Acad Sci U S A ; 115(7): E1530-E1539, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29378952

RESUMO

Activation of the NLRP3 inflammasome induces maturation of IL-1ß and IL-18, both validated targets for treating acute and chronic inflammatory diseases. Here, we demonstrate that OLT1177, an orally active ß-sulfonyl nitrile molecule, inhibits activation of the NLRP3 inflammasome. In vitro, nanomolar concentrations of OLT1177 reduced IL-1ß and IL-18 release following canonical and noncanonical NLRP3 inflammasome activation. The molecule showed no effect on the NLRC4 and AIM2 inflammasomes, suggesting specificity for NLRP3. In LPS-stimulated human blood-derived macrophages, OLT1177 decreased IL-1ß levels by 60% and IL-18 by 70% at concentrations 100-fold lower in vitro than plasma concentrations safely reached in humans. OLT1177 also reduced IL-1ß release and caspase-1 activity in freshly obtained human blood neutrophils. In monocytes isolated from patients with cryopyrin-associated periodic syndrome (CAPS), OLT1177 inhibited LPS-induced IL-1ß release by 84% and 36%. Immunoprecipitation and FRET analysis demonstrated that OLT1177 prevented NLRP3-ASC, as well as NLRP3-caspase-1 interaction, thus inhibiting NLRP3 inflammasome oligomerization. In a cell-free assay, OLT1177 reduced ATPase activity of recombinant NLRP3, suggesting direct targeting of NLRP3. Mechanistically, OLT1177 did not affect potassium efflux, gene expression, or synthesis of the IL-1ß precursor. Steady-state levels of phosphorylated NF-κB and IkB kinase were significantly lowered in spleen cells from OLT1177-treated mice. We observed reduced IL-1ß content in tissue homogenates, limited oxidative stress, and increased muscle oxidative metabolism in OLT1177-treated mice challenged with LPS. Healthy humans receiving 1,000 mg of OLT1177 daily for 8 d exhibited neither adverse effects nor biochemical or hematological changes.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamassomos/antagonistas & inibidores , Inflamação/prevenção & controle , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nitrilas/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Caspase 1/metabolismo , Células Cultivadas , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Nitrilas/química , Nitrilas/uso terapêutico
12.
J Immunol Methods ; 452: 32-38, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28927728

RESUMO

Immunophenotyping of whole blood (WB) by flow cytometry (FC) is used clinically to assess a patient's immune status and also in biomedical research. Current protocols recommend storage of immunolabeled samples at 4°C with FC analysis to be completed within seven days. This data acquisition window can be extended to up to one year post-labeling, but this requires cryopreservation of the samples at ultra-low temperatures (≤-80°C or in liquid nitrogen). In this study we optimized a standardized cryopreservation protocol to enable preservation of immunolabeled, human WB samples at -20°C for FC and tested its effectiveness after 0, 5, 15 or 30days. Analysis of stored samples shows that this protocol effectively preserves immunolabeled WB samples and that the duration of storage has no effect on morphology, viability or frequency of WB cell subpopulations, and that the intensity of fluorescent signal from labeled extracellular markers is fully preserved for at least 15days, and up to 30days for some markers. We demonstrate that using this protocol, we are able to differentiate resting versus activated WB cells as demonstrated by detection of significantly increased expression of CD11b by myeloid cells in WB samples pretreated with LPS (100µg/mL for 12h). Finally, we show that this method allows for labeling and detection of the intracellular cytokine (IL-8) up to 30days following cryopreservation from myeloid cells, in previously labeled and cryopreserved WB samples.


Assuntos
Antígenos de Diferenciação/metabolismo , Células Sanguíneas/fisiologia , Criopreservação/métodos , Interleucina-8/metabolismo , Células Mieloides/fisiologia , Separação Celular , Citometria de Fluxo , Humanos , Imunofenotipagem , Monitorização Imunológica
13.
PLoS One ; 12(12): e0189536, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29253007

RESUMO

Trauma/hemorrhagic shock is a complex physiological phenomenon that leads to dysregulation of many molecular pathways. For over a decade, hypertonic saline (HTS) has been used as an alternative resuscitation fluid in the setting of trauma/hemorrhagic shock. In addition to restoring circulating volume within the vascular space, studies have shown a positive immunomodulatory effect of HTS. Targeted studies have shown that HTS affects the transcription of several pro-inflammatory cytokines by inhibiting the NF-κB-IκB pathway in model cell lines and rats. However, few studies have been undertaken to assess the unbiased effects of HTS on the whole transcriptome. This study was designed to interrogate the global transcriptional responses induced by HTS and provides insight into the underlying molecular mechanisms and pathways affected by HTS. In this study, RNA sequencing was employed to explore early changes in transcriptional response, identify key mediators, signaling pathways, and transcriptional modules that are affected by HTS in the presence of a strong inflammatory stimulus. Our results suggest that primary human small airway lung epithelial cells (SAECS) exposed to HTS in the presence and absence of a strong pro-inflammatory stimulus exhibit very distinct effects on cellular response, where HTS is highly effective in attenuating cytokine-induced pro-inflammatory responses via mechanisms that involve transcriptional regulation of inflammation which is cell type and stimulus specific. HTS is a highly effective anti-inflammatory agent that inhibits the chemotaxis of leucocytes towards a pro-inflammatory gradient and may attenuate the progression of both the innate and adaptive immune response.


Assuntos
Citocinas/metabolismo , Células Epiteliais/metabolismo , Pulmão/patologia , Solução Salina Hipertônica/química , Choque Hemorrágico/imunologia , Animais , Movimento Celular , Núcleo Celular/metabolismo , Quimiocina CCL5/metabolismo , Quimiotaxia , Progressão da Doença , Humanos , Inflamação , Fator Regulador 1 de Interferon/metabolismo , Leucócitos/metabolismo , Pulmão/metabolismo , Microcirculação , NF-kappa B/metabolismo , Neutrófilos/metabolismo , Ratos , Fator de Transcrição STAT1/metabolismo , Choque Hemorrágico/tratamento farmacológico , Transdução de Sinais , Baço/metabolismo , Linfócitos T/imunologia
14.
J Leukoc Biol ; 101(1): 261-273, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27531930

RESUMO

Lysophosphatidylcholines (lysoPCs) are effective polymorphonuclear neutrophil (PMN) priming agents implicated in transfusion-related acute lung injury (TRALI). LysoPCs cause ligation of the G2A receptor, cytosolic Ca2+ flux, and activation of Hck. We hypothesize that lysoPCs induce Hck-dependent activation of protein kinase C (PKC), resulting in phosphorylation and membrane translocation of 47 kDa phagocyte oxidase protein (p47phox). PMNs, human or murine, were primed with lysoPCs and were smeared onto slides and examined by digital microscopy or separated into subcellular fractions or whole-cell lysates. Proteins were immunoprecipitated or separated by polyacrylamide gel electrophoresis and immunoblotted for proteins of interest. Wild-type (WT) and PKCγ knockout (KO) mice were used in a 2-event model of TRALI. LysoPCs induced Hck coprecipitation with PKCδ and PKCγ and the PKCδ:PKCγ complex also had a fluorescence resonance energy transfer (FRET)+ interaction with lipid rafts and Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2 (WAVE2). PKCγ then coprecipitated with p47phox Immunoblotting, immunoprecipitation (IP), specific inhibitors, intracellular depletion of PKC isoforms, and PMNs from PKCγ KO mice demonstrated that Hck elicited activation/Tyr phosphorylation (Tyr311 and Tyr525) of PKCδ, which became Thr phosphorylated (Thr507). Activated PKCδ then caused activation of PKCγ, both by Tyr phosphorylation (Τyr514) and Ser phosphorylation, which induced phosphorylation and membrane translocation of p47phox In PKCγ KO PMNs, lysoPCs induced Hck translocation but did not evidence a FRET+ interaction between PKCδ and PKCγ nor prime PMNs. In WT mice, lysoPCs served as the second event in a 2-event in vivo model of TRALI but did not induce TRALI in PKCγ KO mice. We conclude that lysoPCs prime PMNs through Hck-dependent activation of PKCδ, which stimulates PKCγ, resulting in translocation of phosphorylated p47phox.


Assuntos
Membrana Celular/metabolismo , Lisofosfatidilcolinas/farmacologia , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Proteína Quinase C-delta/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-hck/metabolismo , Animais , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Lesão Pulmonar/patologia , Camundongos , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes/farmacologia
15.
Transfusion ; 56(12): 3004-3011, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27667662

RESUMO

BACKGROUND: Transfusion-related acute lung injury (TRALI) is a significant cause of mortality, especially after transfusions containing antibodies to major histocompatibility complex (MHC) class II antigens. We hypothesize that a first event induces both 1) polymorphonuclear neutrophils (PMNs) to express MHC class II antigens, and 2) activation of the pulmonary endothelium, leading to PMN sequestration, so that the infusion of specific MHC class II antibodies to these antigens causes PMN-mediated acute lung injury (ALI). STUDY DESIGN AND METHODS: Rats were treated with saline (NS), endotoxin (lipopolysaccharide [LPS]), or cytokines (interferon-γ [IFNγ], macrophage colony-stimulating factor [MCSF], tumor necrosis factor-α [TNFα]); the PMNs were isolated; and the surface expression of the MHC class II antigen OX6 and priming by OX6 antibodies were measured by flow cytometry or priming assays. RESULTS: A two-event model of ALI was completed with NS, LPS, or IFNγ/MCSF/TNFα (first events) and the infusion of OX6 (second event). Compared with NS incubation, rats treated with either LPS or IFNγ/MCSF/TNFα exhibited OX6 PMN surface expression, OX6 antibodies primed the formyl-methionyl-leucyl phenylalanine (fMLF)-activated respiratory burst, and PMN sequestration was increased. OX6 antibody infusion into LPS-incubated or IFNγ/MCSF/TNFα-incubated rats elicited ALI, the OX6 antibody was present on the PMNs, and PMN depletion abrogated ALI. CONCLUSION: Proinflammatory first events induce PMN MHC class II surface expression, activation of the pulmonary endothelium, and PMN sequestration such that the infusion of cognate antibodies precipitates TRALI.


Assuntos
Lesão Pulmonar Aguda/etiologia , Anticorpos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Citocinas/farmacologia , Endotélio/patologia , Antígenos de Histocompatibilidade Classe II/genética , Lipopolissacarídeos/farmacologia , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/metabolismo , Ratos , Explosão Respiratória/imunologia , Reação Transfusional
16.
J Proteome Res ; 15(10): 3813-3826, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27529569

RESUMO

Uncontrolled inflammatory responses underlie the etiology of acute lung injury and acute distress respiratory syndrome, the most common late complications in trauma, the leading cause of death under the age of 59. Treatment with HTS decreases lung injury in clinical trials, rat models of trauma and hemorrhagic shock and inflammation in lung cell lines, although the mechanisms underlying these responses are still incompletely understood. Transcriptomics (RNaseq), proteomics, and U-13C-glucose tracing metabolomics experiments were performed to investigate the mechanisms of cellular responses to HTS treatment in primary small airway epithelial cells in the presence or absence of inflammatory injury mediated by a cocktail of cytokines (10 ng/mL of IFNγ, IL-1ß, and TNFα). Modestly hyperosmolar HTS has an anti-inflammatory effect, triggers the p53-p21 signaling axis, and deregulates mitochondrial metabolism while inducing minimal apoptosis in response to a second hit by cytokines. Decreased transcription of pro-inflammatory cytokines suggested a role for the tumor suppressor protein p53 in mediating the beneficial effects of the HTS treatment. The anti-inflammatory mechanisms induced by HTS involves p53 gene regulation, promotes cell cycle arrest, and prevents ROS formation and mitochondria depolarization. Pharmaceutical targeting of the p53-p21 axis may mimic or reinforce the beneficial effects mediated by HTS when sustained hypertonicity cannot be maintained.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Epiteliais/efeitos dos fármacos , Inflamação/prevenção & controle , Solução Salina Hipertônica/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Bronquíolos/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/fisiologia , Células Epiteliais/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
J Trauma Acute Care Surg ; 80(1): 16-23; discussion 23-5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26491796

RESUMO

BACKGROUND: Trauma-induced coagulopathy (TIC) is associated with a fourfold increased risk of mortality. Hyperfibrinolysis is a component of TIC, but its mechanism is poorly understood. Plasminogen activation inhibitor (PAI-1) degradation by activated protein C has been proposed as a mechanism for deregulation of the plasmin system in hemorrhagic shock, but in other settings of ischemia, tissue plasminogen activator (tPA) has been shown to be elevated. We hypothesized that the hyperfibrinolysis in TIC is not the result of PAI-1 degradation but is driven by an increase in tPA, with resultant loss of PAI-1 activity through complexation with tPA. METHODS: Eighty-six consecutive trauma activation patients had blood collected at the earliest time after injury and were screened for hyperfibrinolysis using thrombelastography (TEG). Twenty-five hyperfibrinolytic patients were compared with 14 healthy controls using enzyme-linked immunosorbent assays for active tPA, active PAI-1, and PAI-1/tPA complex. Blood was also subjected to TEG with exogenous tPA challenge as a functional assay for PAI-1 reserve. RESULTS: Total levels of PAI-1 (the sum of the active PAI-1 species and its covalent complex with tPA) are not significantly different between hyperfibrinolytic trauma patients and healthy controls: median, 104 pM (interquartile range [IQR], 48-201 pM) versus 115 pM (IQR, 54-202 pM). The ratio of active to complexed PAI-1, however, was two orders of magnitude lower in hyperfibrinolytic patients than in controls. Conversely, total tPA levels (active + complex) were significantly higher in hyperfibrinolytic patients than in controls: 139 pM (IQR, 68-237 pM) versus 32 pM (IQR, 16-37 pM). Hyperfibrinolytic trauma patients displayed increased sensitivity to exogenous challenge with tPA (median LY30 of 66.8% compared with 9.6% for controls). CONCLUSION: Depletion of PAI-1 in TIC is driven by an increase in tPA, not PAI-1 degradation. The tPA-challenged TEG, based on this principle, is a functional test for PAI-1 reserves. Exploration of the mechanism of up-regulation of tPA is critical to an understanding of hyperfibrinolysis in trauma. LEVEL OF EVIDENCE: Prognostic and epidemiologic study, level II.


Assuntos
Fibrinólise/fisiologia , Inibidor 1 de Ativador de Plasminogênio/sangue , Ativador de Plasminogênio Tecidual/sangue , Ferimentos e Lesões/sangue , Adulto , Transtornos da Coagulação Sanguínea/fisiopatologia , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Escala de Gravidade do Ferimento , Masculino , Pessoa de Meia-Idade , Tromboelastografia
18.
Surgery ; 158(2): 386-92, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979440

RESUMO

INTRODUCTION: Systemic hyperfibrinolysis (accelerated clot degradation) and fibrinolysis shutdown (impaired clot degradation) are associated with increased mortality compared with physiologic fibrinolysis after trauma. Animal models have not reproduced these changes. We hypothesize rodents have a shutdown phenotype that require an exogenous profibrinolytic to differentiate mechanisms that promote or inhibit fibrinolysis. METHODS: Fibrinolysis resistance was assessed by thrombelastography (TEG) using exogenous tissue plasminogen activator (tPA) titrations in whole blood. There were 3 experimental groups: (1) tissue injury (laparotomy/bowel crush), (2) shock (hemorrhage to mean arterial pressure of 20 mmHg), and (3) control (arterial cannulation and tracheostomy). Baseline and 30-minute postintervention blood samples were collected, and assayed with TEG challenged with taurocholic acid (TUCA). RESULTS: Rats were resistant to exogenous tPA; the percent clot remaining 30 minutes after maximum amplitude (CL30) at 150 ng/mL (P = .511) and 300 ng/mL (P = .931) was similar to baseline, whereas 600 ng/mL (P = .046) provoked fibrinolysis. Using the TUCA challenge, the percent change in CL30 from baseline was increased in tissue injury compared with control (P = .048.), whereas CL30 decreased in shock versus control (P = .048). tPA increased in the shock group compared with tissue injury (P = .009) and control (P = .012). CONCLUSION: Rats have an innate fibrinolysis shutdown phenotype. The TEG TUCA challenge is capable of differentiating changes in clot stability with rats undergoing different procedures. Tissue injury inhibits fibrinolysis, whereas shock promotes tPA-mediated fibrinolysis.


Assuntos
Traumatismos Abdominais/sangue , Modelos Animais de Doenças , Fibrinólise/efeitos dos fármacos , Fibrinolíticos/farmacologia , Ratos , Choque Hemorrágico/sangue , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Fibrinólise/fisiologia , Masculino , Fenótipo , Distribuição Aleatória , Ratos Sprague-Dawley , Ácido Taurocólico/farmacologia , Tromboelastografia
19.
PLoS One ; 9(12): e114129, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25479425

RESUMO

Hypertonic saline (HTS) has been used intravenously to reduce organ dysfunction following injury and as an inhaled therapy for cystic fibrosis lung disease. The role and mechanism of HTS inhibition was explored in the TNFα and IL-1ß stimulation of pulmonary epithelial cells. Hyperosmolar (HOsm) media (400 mOsm) inhibited the production of select cytokines stimulated by TNFα and IL-1ß at the level of mRNA translation, synthesis and release. In TNFα stimulated A549 cells, HOsm media inhibited I-κBα phosphorylation, NF-κB translocation into the nucleus and NF-κB nuclear binding. In IL-1ß stimulated cells HOsm inhibited I-κBα phosphorylation without affecting NF-κB translocation or nuclear binding. Incubation in HOsm conditions inhibited both TNFα and IL-1ß stimulated nuclear localization of interferon response factor 1 (IRF-1). Additional transcription factors such as AP-1, Erk-1/2, JNK and STAT-1 were unaffected by HOsm. HTS and sorbitol supplemented media produced comparable outcomes in all experiments, indicating that the effects of HTS were mediated by osmolarity, not by sodium. While not affecting MAPK modules discernibly in A549 cells, both HOsm conditions inhibit IRF-1 against TNFα or IL-1ß, but inhibit p65 NF-kB translocation only against TNFα but not IL-1ß. Thus, anti-inflammatory mechanisms of HTS/HOsm appear to disrupt cytokine signals at distinct intracellular steps.


Assuntos
Inflamação/genética , Interleucina-1beta/metabolismo , Pulmão/metabolismo , Transcrição Gênica , Fator de Necrose Tumoral alfa/genética , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Pulmão/fisiopatologia , NF-kappa B/genética , Fosforilação , Solução Salina Hipertônica/administração & dosagem , Transdução de Sinais/genética , Fator de Transcrição RelA
20.
J Trauma Acute Care Surg ; 76(5): 1214-21, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24747451

RESUMO

BACKGROUND: Early acute kidney injury (AKI) following trauma is associated with multiorgan failure and mortality. Leukotrienes have been implicated both in AKI and in acute lung injury. Activated 5-lipoxygenase (5-LO) colocalizes with 5-LO-activating protein (FLAP) in the first step of leukotriene production following trauma and hemorrhagic shock (T/HS). Diversion of postshock mesenteric lymph, which is rich in the 5-LO substrate of arachidonate, attenuates lung injury and decreases 5-LO/FLAP associations in the lung after T/HS. We hypothesized that mesenteric lymph diversion (MLD) will also attenuate postshock 5-LO-mediated AKI. METHODS: Rats underwent T/HS (laparotomy, hemorrhagic shock to a mean arterial pressure of 30 mm Hg for 45 minutes, and resuscitation), and MLD was accomplished via cannulation of the mesenteric duct. Extent of kidney injury was determined via histology score and verified by urinary neutrophil gelatinase-associated lipocalin assay. Kidney sections were immunostained for 5-LO and FLAP, and colocalization was determined by fluorescence resonance energy transfer signal intensity. The end leukotriene products of 5-LO were determined in urine. RESULTS: AKI was evident in the T/HS group by derangement in kidney tubule architecture and confirmed by neutrophil gelatinase-associated lipocalin assay, whereas MLD during T/HS preserved renal tubule morphology at a sham level. MLD during T/HS decreased the associations between 5-LO and FLAP demonstrated by fluorescence resonance energy transfer microscopy and decreased leukotriene production in urine. CONCLUSION: 5-LO and FLAP colocalize in the interstitium of the renal medulla following T/HS. MLD attenuates this phenomenon, which coincides with pathologic changes seen in tubules during kidney injury and biochemical evidence of AKI. These data suggest that gut-derived leukotriene substrate predisposes the kidney and the lung to subsequent injury.


Assuntos
Injúria Renal Aguda/enzimologia , Lesão Pulmonar Aguda/enzimologia , Araquidonato 5-Lipoxigenase/metabolismo , Rim/enzimologia , Insuficiência de Múltiplos Órgãos/metabolismo , Choque Hemorrágico/enzimologia , Ferimentos e Lesões/enzimologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/fisiopatologia , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Araquidonato 5-Lipoxigenase/urina , Biomarcadores/metabolismo , Biomarcadores/urina , Modelos Animais de Doenças , Ativação Enzimática/fisiologia , Escala de Gravidade do Ferimento , Leucotrienos/metabolismo , Leucotrienos/urina , Linfonodos/enzimologia , Linfonodos/metabolismo , Masculino , Mesentério/enzimologia , Mesentério/metabolismo , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/fisiopatologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Choque Hemorrágico/diagnóstico , Choque Hemorrágico/etiologia , Ferimentos e Lesões/complicações , Ferimentos e Lesões/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA