Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 23(4): 629-636, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33442024

RESUMO

PURPOSE: SOX10 variants previously implicated in Waardenburg syndrome (WS) have now been linked to Kallmann syndrome (KS), the anosmic form of idiopathic hypogonadotropic hypogonadism (IHH). We investigated whether SOX10-associated WS and IHH represent elements of a phenotypic continuum within a unifying disorder or if they represent phenotypically distinct allelic disorders. METHODS: Exome sequencing from 1,309 IHH subjects (KS: 632; normosmic idiopathic hypogonadotropic hypogonadism [nIIHH]: 677) were reviewed for SOX10 rare sequence variants (RSVs). The genotypic and phenotypic spectrum of SOX10-related IHH (this study and literature) and SOX10-related WS cases (literature) were reviewed and compared with SOX10-RSV spectrum in gnomAD population. RESULTS: Thirty-seven SOX10-associated IHH cases were identified as follows: current study: 16 KS; 4 nIHH; literature: 16 KS; 1 nIHH. Twenty-three IHH cases (62%; all KS), had ≥1 known WS-associated feature(s). Moreover, five previously reported SOX10-associated WS cases showed IHH-related features. Four SOX10 missense RSVs showed allelic overlap between IHH-ascertained and WS-ascertained cases. The SOX10-HMG domain showed an enrichment of RSVs in disease states versus gnomAD. CONCLUSION: SOX10 variants contribute to both anosmic (KS) and normosmic (nIHH) forms of IHH. IHH and WS represent SOX10-associated developmental defects that lie along a unifying phenotypic continuum. The SOX10-HMG domain is critical for the pathogenesis of SOX10-related human disorders.


Assuntos
Hipogonadismo , Síndrome de Kallmann , Fatores de Transcrição SOXE/genética , Síndrome de Waardenburg , Genótipo , Humanos , Hipogonadismo/genética , Mutação , Síndrome de Waardenburg/genética
2.
BMC Mol Biol ; 11: 66, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20807437

RESUMO

BACKGROUND: Postnatal expansion of the pancreatic ß-cell mass is required to maintain glucose homeostasis immediately after birth. This ß-cell expansion is regulated by multiple growth factors, including glucose, insulin, insulin-like growth factor (IGF-1) and epidermal growth factor (EGF). These mitogens signal through several downstream pathways (AKT, ERK, STAT3, and JNK) to regulate the survival and proliferation of ß-cells. Survivin, an oncofetal protein with both pro-proliferative and anti-apoptotic properties, is a known transcriptional target of both IGF-1 and EGF in cancer cells. Here, we analyzed the effects of the ß-cell mitogens IGF-1 and EGF on survivin regulation in the established pancreatic ß-cell model cell lines, MIN6 and INS-1 and in primary mouse islets. RESULTS: In pancreatic ß-cells, treatment with glucose, insulin, or EGF increased survivin protein levels at early time points. By contrast, no significant effects on survivin were observed following IGF-1 treatment. EGF-stimulated increases in survivin protein were abrogated in the presence of downstream inhibitors of the Raf-1/MEK/ERK pathway. EGF had no significant effect on survivin transcription however it prolonged the half-life of the survivin protein and stabilized survivin protein levels by inhibiting surviving ubiquitination. CONCLUSIONS: This study defines a novel mechanism of survivin regulation by EGF through the Raf-1/MEK/ERK pathway in pancreatic ß-cells, via prolongation of survivin protein half-life and inhibition of the ubiquitin-mediated proteasomal degradation pathway. This mechanism may be important for regulating ß-cell expansion after birth.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Glucose/metabolismo , Humanos , Proteínas Inibidoras de Apoptose/genética , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-raf/genética , Ratos , Proteínas Repressoras/genética , Survivina , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA