Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7: 45701, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361919

RESUMO

The formation of neurofibrillary tangles (NFTs), oxidative stress and neuroinflammation have emerged as key targets for the treatment of Alzheimer's disease (AD), the most prevalent neurodegenerative disorder. These pathological hallmarks are closely related to the over-activity of the enzyme GSK3ß and the downregulation of the defense pathway Nrf2-EpRE observed in AD patients. Herein, we report the synthesis and pharmacological evaluation of a new family of multitarget 2,4-dihydropyrano[2,3-c]pyrazoles as dual GSK3ß inhibitors and Nrf2 inducers. These compounds are able to inhibit GSK3ß and induce the Nrf2 phase II antioxidant and anti-inflammatory pathway at micromolar concentrations, showing interesting structure-activity relationships. The association of both activities has resulted in a remarkable anti-inflammatory ability with an interesting neuroprotective profile on in vitro models of neuronal death induced by oxidative stress and energy depletion and AD. Furthermore, none of the compounds exhibited in vitro neurotoxicity or hepatotoxicity and hence they had improved safety profiles compared to the known electrophilic Nrf2 inducers. In conclusion, the combination of both activities in this family of multitarget compounds confers them a notable interest for the development of lead compounds for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/agonistas , Fármacos Neuroprotetores/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Descoberta de Drogas , Humanos , Inflamação/metabolismo , Inflamação/prevenção & controle , Estresse Oxidativo , Proteínas tau/metabolismo
2.
Neuropharmacology ; 99: 187-95, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26188145

RESUMO

Stopping the ischemic cascade by targeting its components is a potential strategy for acute ischemic stroke treatment. During ischemia and especially over reperfusion, oxidative stress plays a major role in causing neuronal cell death. Melatonin has been previously reported to provide neuroprotective effects in in vivo models of stroke by a mechanism that implicates melatonin receptors. In this context, this study was planned to test the potential neuroprotective effects of the novel melatonin MT1/MT2 receptor agonist, Neu-P11, against brain ischemia in in vitro and in vivo models, and to elucidate its underlying mechanism of action. Neu-P11 proved to be a good antioxidant, to protect against glutamate-induced excitotoxicity and oxygen and glucose deprivation in hippocampal slices, and to reduce infarct volume in an in vivo stroke model. Regarding its mechanism of action, the protective effect of Neu-P11 was reverted by luzindole (melatonin receptor antagonist), AG490 (JAK2 inhibitor), LY294002 (PI3/AKT inhibitor) and PD98059 (MEK/ERK1/2 inhibitor). In conclusion, Neu-P11 affords neuroprotection against brain ischemia in in vitro and in vivo models by activating a pro-survival signaling pathway that involves melatonin receptors, JAK/STAT, PI3K/Akt and MEK/ERK1/2.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Indóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Piranos/farmacologia , Animais , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Glucose/deficiência , Humanos , Masculino , Melatonina/análogos & derivados , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Ratos Sprague-Dawley , Receptores de Melatonina/agonistas , Receptores de Melatonina/antagonistas & inibidores , Receptores de Melatonina/metabolismo , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA