Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cyst Fibros ; 22(6): 1062-1069, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37331863

RESUMO

BACKGROUND: Elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) significantly improves health outcomes in people with cystic fibrosis (pwCF) carrying one or two F508del mutations. According to in vitro assays performed in FRT cells, 178 additional mutations respond to ELX/TEZ/IVA. The N1303K mutation is not included in this list of mutations. Recent in vitro data suggested that ELX/TEZ/IVA increases N1303K-CFTR activity. Based on the in vitro response, eight patients commenced treatment with ELX/TEZ/IVA. METHODS: Two homozygotes; and six compound heterozygotes N1303K/nonsense or frameshift mutation pwCF were treated off label with ELX/TEZ/IVA. Clinical data before and 8 weeks after starting treatment were prospectively collected. The response to ELX/TEZ/IVA was assessed in intestinal organoids derived from 5 study patients and an additional patient carrying N1303K that is not receiving treatment. RESULTS: Compared to the values before commencing treatment, mean forced expiratory volume in 1 second increased by 18.4 percentage points and 26.5% relative to baseline, mean BMI increased by 0.79 Kg/m2, and mean lung clearance index decreased by 3.6 points and 22.2%. There was no significant change in sweat chloride. Nasal potential difference normalized in four patients and remained abnormal in three. Results in 3D intestinal organoids and 2D nasal epithelial cultures showed a response in CFTR channel activity. CONCLUSIONS: This report supports the previously reported in vitro data, performed in human nasal and bronchial epithelial cells and intestinal organoids, that pwCF who carry the N1303K mutation have a significant clinical benefit by ELX/TEZ/IVA treatment.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Mutação , Benzodioxóis/uso terapêutico , Aminofenóis/uso terapêutico , Agonistas dos Canais de Cloreto/uso terapêutico
2.
NMR Biomed ; 33(2): e4189, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31793111

RESUMO

Investigation of hyperpolarized substrate metabolism has been showing utility in real-time determination of in-cell and in vivo enzymatic activities. Intracellular reaction rates may vary during the course of a measurement, even on the very short time scales of visibility on hyperpolarized MR, due to many factors such as the availability of the substrate and co-factors in the intracellular space. Despite this potential variation, the kinetic analysis of hyperpolarized signals typically assumes that the same rate constant (and in many cases, the same rate) applies throughout the course of the reaction as observed via the build-up and decay of the hyperpolarized signals. We demonstrate here an acquisition approach that can null the need for such an assumption and enable the detection of instantaneous changes in the rate of the reaction during an ex vivo hyperpolarized investigation, (i.e. in the course of the decay of one hyperpolarized substrate dose administered to a viable tissue sample ex vivo). This approach utilizes hyperpolarized product selective saturating-excitation pulses. Similar pulses have been previously utilized in vivo for spectroscopic imaging. However, we show here favorable consequences to kinetic rate determinations in the preparations used. We implement this acquisition strategy for studies on perfused tissue slices and develop a theory that explains why this particular approach enables the determination of changes in enzymatic rates that are monitored via the chemical conversions of hyperpolarized substrates. Real-time changes in intracellular reaction rates are demonstrated in perfused brain, liver, and xenograft breast cancer tissue slices and provide another potential differentiation parameter for tissue characterization.


Assuntos
Sistemas Computacionais , Metabolismo , Animais , Simulação por Computador , Feminino , Humanos , Fígado/diagnóstico por imagem , Células MCF-7 , Camundongos SCID , Processamento de Sinais Assistido por Computador , Fatores de Tempo
3.
NMR Biomed ; 32(2): e4043, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30575159

RESUMO

Precision-cut liver slices (PCLS) are widely used in liver research as they provide a liver model with all liver cell types in their natural architecture. The purpose of this study was to demonstrate the use of PCLS for hyperpolarized metabolic investigation in a mouse model, for potential future application in liver biopsy cores. Fresh normal liver was harvested from six mice. 500 µm PCLS were prepared and placed in a 10 mm NMR tube in an NMR spectrometer and perfused continuously. 31 P spectra were acquired to evaluate the presence of adenosine triphosphate (ATP) and validate viability in all samples. Hyperpolarized [1-13 C]pyruvate was flushed into the NMR tube in the spectrometer. Consecutive 13 C NMR spectra were acquired immediately after the injection using both non-selective (five injections, two livers) and selective RF excitation (six injections, three livers). The 31 P spectra showed the characteristic signals of ATP, confirming the viability of the PCLS for more than 2.5 h in the spectrometer. After each of the [1-13 C]pyruvate injections, both [1-13 C]lactate and [1-13 C]alanine signals were detected. Selective RF excitation aimed at both [1-13 C]lactate and [1-13 C]alanine enabled better visualization and quantification of the metabolic activity. Using this acquisition approach only the newly formed metabolites are observed upon excitation, and their intensities relative to those of hyperpolarized pyruvate enable quantification of metabolite production rates. This rate of lactate and alanine production appeared to be constant throughout the measurement time, with alanine production about 2.3 times higher than lactate. In summary, the viability of PCLS in an NMR spectrometer was demonstrated and hyperpolarized [1-13 C]pyruvate metabolism was recorded. This study opens up the possibility of evaluating alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities in human liver biopsies, while preserving the tissue architecture and viability. In healthy, well-perfused liver slices the ratio of ALT to LDH activity is about 2.3.


Assuntos
Alanina Transaminase/metabolismo , Isótopos de Carbono/metabolismo , L-Lactato Desidrogenase/metabolismo , Fígado/enzimologia , Fígado/patologia , Ácido Pirúvico/metabolismo , Animais , Biópsia , Masculino , Metaboloma , Camundongos Endogâmicos ICR
4.
Nat Commun ; 8(1): 341, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839124

RESUMO

The dissolution-dynamic nuclear polarization technology had previously enabled nuclear magnetic resonance detection of various nuclei in a hyperpolarized state. Here, we show the hyperpolarization of 31P nuclei in important biological phosphates (inorganic phosphate and phosphocreatine) in aqueous solutions. The hyperpolarized inorganic phosphate showed an enhancement factor >11,000 (at 5.8 T, 9.3% polarization) in D2O (T1 29.4 s). Deuteration and the solution composition and pH all affected the lifetime of the hyperpolarized state. This capability opens up avenues for real-time monitoring of phosphate metabolism, distribution, and pH sensing in the live body without ionizing radiation. Immediate changes in the microenvironment pH have been detected here in a cell-free system via the chemical shift of hyperpolarized inorganic phosphate. Because the 31P nucleus is 100% naturally abundant, future studies on hyperpolarized phosphates will not require expensive isotope labeling as is usually required for hyperpolarization of other substrates.Real-time monitoring of phosphate metabolism and distribution in the live body without ionizing radiation is highly desirable. Here, the authors show dissolution-dynamic nuclear polarization technology can enable nuclear magnetic resonance detection of hyperpolarized 31P of important biological phosphates in aqueous solutions.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Fosfatos/metabolismo , Isótopos de Fósforo/metabolismo , Soluções/química , Trifosfato de Adenosina/metabolismo , Concentração de Íons de Hidrogênio , Marcação por Isótopo , Fosfocreatina/metabolismo , Reprodutibilidade dos Testes
5.
Chem Commun (Camb) ; 53(65): 9121-9124, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28759073

RESUMO

The ecto-nucleoside triphosphate diphosphohydrolase-1 (E-NTPDase-1, CD39) enzyme is responsible for the breakdown of extracellular ATP to ADP and then to AMP by a two-step process. Defective CD39 activity has been described in a variety of medical conditions including malignancy and rheumatic diseases and has been proved to be of major diagnostic and clinical importance. Here we show for the first time that a 31P NMR spectroscopy methodology enables the quantification of these two steps in a single blood sample. We have applied this assay to determine the E-NTPDase activity on human mononuclear cells taken from two siblings affected by a stop-codon mutation in the ENTPD1 gene, their obligatory heterozygous parents, and healthy volunteers. The affected subjects presented low ATP breakdown activity, mainly expressed as low AMP production.


Assuntos
Trifosfato de Adenosina/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Apirase/genética , Apirase/metabolismo , Difosfato de Adenosina/análise , Monofosfato de Adenosina/análise , Trifosfato de Adenosina/análise , Adulto , Códon de Terminação/genética , Ensaios Enzimáticos/métodos , Feminino , Humanos , Hidrólise , Leucócitos Mononucleares/enzimologia , Leucócitos Mononucleares/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Fosfatos/análise , Radioisótopos de Fósforo
6.
JIMD Rep ; 26: 31-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26238251

RESUMO

Transaldolase (TALDO) deficiency has various clinical manifestations including liver dysfunction, hepatosplenomegaly, anemia, thrombocytopenia, and dysmorphic features. We report a case presenting prenatally with hyperechogenic bowel and intrauterine growth restriction. The infant was born small for gestational age, with cutis laxa and hypertrichosis. Postnatally, meconium plug was identified, complicated with intestinal obstruction necessitating laparotomy, partial resection of the intestine, and ileostomy. Liver biopsy revealed cholangiolar proliferation and portal fibrosis. He also suffered from persistent congenital thrombocytopenia requiring platelet transfusions and severe hypothyroidism with normal anatomical and structural gland responding only to the combination of T3 and T4 treatment. Neurologically, severe hypotonia and anisocoria were noted at the age of 2 months. Brain MRI was normal. Shortly after the abdominal surgery, a rapid liver failure ensued, which eventually led to his death. Specific metabolic tests ruled out glycosylation disorders, yet urine analysis using 1H NMR showed accumulation of sedoheptulose which was previously described in patients with transaldolase deficiency. Sequencing of the gene-encoding transaldolase (TALDO1) revealed a homozygous stop mutation c.669C>G; p.Tyr223*. In conclusion, we present an infant with a novel homozygous mutation in TALDO1, causing TALDO deficiency, and extend the clinical characteristics of this rare syndrome.

7.
Chem Commun (Camb) ; 49(63): 7076-8, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23823928

RESUMO

Real-time monitoring of betaine aldehyde metabolism at high temporal resolution was accomplished using a hyperpolarized choline analog and (13)C-NMR. This represents the first observation of an aldehyde intermediate on hyperpolarized MR and opens the way for kinetic studies of oxidase/dehydrogenase enzymes in vitro and in vivo.


Assuntos
Betaína/análogos & derivados , Espectroscopia de Ressonância Magnética , Oxirredutases do Álcool/metabolismo , Betaína/química , Isótopos de Carbono/química , Colina/química , Cinética , Oxirredução
8.
Contrast Media Mol Imaging ; 6(3): 139-47, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21698772

RESUMO

Choline as a reporter molecule has been investigated by in vivo magnetic resonance for almost three decades. Accumulation of choline metabolites (mainly the phosphorylated forms) had been observed in malignancy in preclinical models, ex-vivo, in vivo and in patients. The combined choline metabolite signal appears in (1) H-MRS of the brain and its relative intensity had been used as a diagnostic factor in various conditions. The advent of spin hyperpolarization methods for in vivo use has raised interest in the ability to follow the physiological metabolism of choline into acetylcholine in the brain. Here we present a stable-isotope labeled choline analog, [1,1,2,2-D(4) ,2-(13) C]choline chloride, that is suitable for this purpose. In this analog, the (13) C position showed 24% polarization in the liquid state, following DNP hyperpolarization. This nucleus also showed a long T(1) (35 s) at 11.8 T and 25 °C, which is a prerequisite for hyperpolarized studies. The chemical shift of this (13) C position differentiates choline and acetylcholine from each other and from the other water-soluble choline metabolites, namely phosphocholine and betaine. Enzymatic studies using an acetyltransferase enzyme showed the synthesis of the deuterated-acetylcholine form at thermal equilibrium conditions and in a hyperpolarized state. Analysis using a comprehensive model showed that the T(1) of the formed hyperpolarized [1,1,2,2-D(4) ,2-(13) C]acetylcholine was 34 s at 14.1 T and 37 °C. We conclude that [1,1,2,2-D(4) ,2-(13) C]choline chloride is a promising new molecular probe for hyperpolarized metabolic studies and discuss the factors related to its possible use in vivo.


Assuntos
Acetilcolina/síntese química , Colina/análise , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Sondas Moleculares/química , Acetilcolina/análise , Animais , Betaína , Química Encefálica , Colina/metabolismo , Humanos , Fosforilcolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA