Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Med Sci ; 20(1): 280-288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414451

RESUMO

Introduction: Resveratrol, a polyphenol extracted from many plant species, has emerged as a promising pro-apoptotic agent in various cancer cells. However, the role of resveratrol in cell proliferation and apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis (RA-FLS) is not fully understood. The study was aimed at elucidating the role of resveratrol in cell proliferation and apoptosis of RA-FLS and the underlying molecular mechanism. Material and methods: Cultured RA-FLSs were subjected to tumour necrosis factor α (TNF-α). The cell proliferation was measured by Cell Counting Kit-8 assay. Cell apoptosis and cell cycle of RA-FLSs were determined by flow cytometry. The levels of apoptosis or autophagy or cell cycle-related protein were detected by immunoblot analysis. Results: In our study, we confirmed that resveratrol reversed TNF-α mediated cell proliferation in RA-FLS. Meanwhile, resveratrol blocked cells at the G2/M stage and reduced the ratio of S phase cells through upregulation of p53 and consequently led to apoptotic cell death. Quite interestingly, we found that resveratrol reversed TNF-α-induced autophagy. Inhibition of autophagy by resveratrol or autophagy inhibitor or Beclin-1 siRNA suppressed TNF-α mediated cell survival and promoted cell apoptosis. However, the autophagy inducer rapamycin (RAPA) reversed the effect of resveratrol on autophagy and cell proliferation. Mechanistic studies revealed that resveratrol inhibited the activation of the phosphoinositide 3-kinases/serine-threonine kinase (PI3K/AKT) pathway. Inhibition of PI3K/AKT pathway by inhibitor LY294002 or resveratrol increased the expression of p53 and decreased the expression of cycle protein (cyclin B1), which further led to block cells in the G2/M arrest. Conclusions: Our preliminary study indicated that resveratrol may suppress RA-FLS cell survival and promote apoptosis at least partly through regulation of autophagy and the AKT-p53 axis.

2.
Immun Inflamm Dis ; 12(1): e1139, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270310

RESUMO

BACKGROUND: For the unclear pathogenesis of Sjogren's syndrome (SS), further exploration is necessary. Mesenchymal stem cells (MSCs) and derived exosomes (MSCs-exo) have exhibited promising results in treating SS. OBJECT: This study aimed to investigate the effect and mechanism of human umbilical cord MSCs (UC-MSCs) on SS. METHODS: Nonobese Diabetic (NOD) mouse splenic T cells were co-cultured with UC-MSCs and UC-MSCs-exo, and interferon-gamma (IFN-γ), interleukin (IL)-6, IL-10, prostaglandin E2 (PGE2), and transforming growth factor-ß1 (TGF-ß1) levels in the supernatant were assessed by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Co-cultured T cells were injected into NOD mice via the tail vein. The inflammatory cell infiltration in the intestine and the submandibular gland was characterized by hematoxylin-eosin staining. Treg/Th17 homeostasis within the spleen was determined by flow cytometry. Gut microbiota was detected by 16S rRNA sequencing, and the relationship between differential microbiota and Treg/Th17 cytokines was analyzed by the Pearson correlation coefficient. RESULTS: UC-MSCs, UC-MSCs-exo, and NOD mouse splenic T cells were successfully cultured and identified. After T cells were co-cultured with UC-MSCs and UC-MSCs-exo, both IFN-γ and IL-6 were decreased while IL-10, PGE2, and TGF-ß1 were increased in transcriptional and translational levels. UC-MSCs and UC-MSCs-exo partially restored salivary secretion function, reduced Ro/SSA antibody and α-Fodrin immunoglobulin A levels, reduced inflammatory cell infiltration in the intestine and submandibular gland, raised proportion of Treg cells, decreased IFN-γ, IL-6, IL-2, IL-17, lipopolysaccharide, and tumor necrosis factor-alpha levels, and raised IL-10, Foxp3, and TGF-ß1 levels by affecting co-cultured T cells. The intervention of UC-MSCs and UC-MSCs-exo improved intestinal homeostasis in NOD mice by increasing microbiota diversity and richness. Additionally, differential microbiota was significantly associated with Treg/Th17 cytokine levels. CONCLUSION: Human UC-MSCs and UC-MSCs-exo improved disease characterization of SS in NOD mice through regulation of gut microbiota and Treg/Th17 cellular immunity.


Assuntos
Microbioma Gastrointestinal , Células-Tronco Mesenquimais , Síndrome de Sjogren , Animais , Camundongos , Humanos , Linfócitos T Reguladores , Camundongos Endogâmicos NOD , Interleucina-10 , Interleucina-6 , Dinoprostona , RNA Ribossômico 16S , Síndrome de Sjogren/terapia , Fator de Crescimento Transformador beta1 , Citocinas , Imunidade Celular , Cordão Umbilical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA