Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 240: 104190, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33766670

RESUMO

Chronic stressors represented risk factors for the etiology or exacerbation of several gastrointestinal diseases. The goal of the present study was to examine whether chronic restraint stress (CRS) could initiate and aggravate colonic inflammation, integrity damage and metabolic disturbance of rats. Firstly, increased inflammatory cytokines (interferon-γ (IFN-γ), tumor necrosis factor-α(TNF-α) and interleukin-10(IL-10)) and decreased tight junction (TJ) proteins (occludin and zonula occludins-1 (ZO-1)) in rat colon were observed. Secondly, untargeted metabolomics based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass (UPLC-Q-TOF/MS) revealed that TRP metabolism was the most prominently affected. Thirdly, quantification of TRP and its metabolites via prominence ultrafast liquid chromatography coupled with a QTRAP 5500 mass (UFLC-QTRAP-5500/MS) showed that TRP, kynurenine (KYN), kynurenic acid (KA) and 3-hydroxykynurenine (3-HK) were significantly increased. At the same time, 5-hydroxytryptamine (5-HT) was unchanged and 5-hydroxyindolacetic acid (5-HIAA) was significantly decreased in the colon of CRS rats. Besides, TRP metabolic enzyme changes were with the same trends as the corresponding metabolites. Thus, our data showed that CRS could initiate colonic inflammation, integrity damage and colonic metabolism disturbance, especially TRP-KYN metabolism pathway of rats, which may provide an experimental background for future research on stress-related gastrointestinal dysfunction. SIGNIFICANCE: Chronic exposure to psychological stress could induce metabolic imbalance of the body, and stressful life events were intimately correlated with frequent relapses in patients with intestinal disorders. The present study showed that chronic restraint stress (CRS) could initiate and aggravate colonic inflammation, integrity damage and metabolic disturbance, especially tryptophan-kynurenine metabolism of rats. Tryptophan-kynurenine pathway may be involved in the initiation and development of diseases induced by chronic stress. This research may shed light on future research on stress-related gastrointestinal dysfunction.


Assuntos
Cinurenina , Triptofano , Animais , Colo , Homeostase , Humanos , Ácido Cinurênico , Ratos
2.
Int J Phytoremediation ; 21(10): 1041-1049, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31020865

RESUMO

This study assessed the effects of Pb (0, 200, 500, 1000 mg kg-1) and Cd (0, 5, 15, 30, 50 mg kg-1) on photosynthesis in Amaranthus spinosus (A. spinosus), as well as the potential for phytoremediation by pot-culture experiment. Exposure to Pb/Cd produced a concentration-dependent decrease in biomass and all photosynthesis parameters, except for non-photochemical quenching, which increased with the metal concentration. The metals accumulated more in roots compared to shoots. The bioconcentration factor (BCF) of Pb was <1 in shoots at all Pb levels, whereas the BCF was <1 in roots at all but the lowest concentration of Pb. Roots extracted Cd from soil at all treatments. The translocation factor of Cd was larger than that of Pb suggesting that Cd is more mobile than Pb in A. spinosus. Amaranthus spinosus displays a high tolerance for both Pb and Cd with regards to growth and photochemical efficiency, but it is more sensitive to Cd than Pb. Amaranthus spinosus accumulates Pb and Cd primarily in the roots and Cd is more bioconcentrated and translocated in comparison to Pb. This investigation shows that A. spinosus has good potential for phytoremediation of soils contaminated by low levels of Cd and Pb.


Assuntos
Amaranthus , Poluentes do Solo/análise , Biodegradação Ambiental , Cádmio/análise , Chumbo , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA