Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Treat Res ; 190: 143-179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38113001

RESUMO

RNA epigenetics, or epitranscriptome, is a growing group of RNA modifications historically classified into two categories: RNA editing and RNA modification. RNA editing is usually understood as post-transcriptional RNA processing (except capping, splicing and polyadenylation) that changes the RNA nucleotide sequence encoded by the genome. This processing can be achieved through the insertion or deletion of nucleotides or deamination of nucleobases, generating either standard nucleotides such as uridine (U) or the rare nucleotide inosine (I). Adenosine-to-inosine (A-to-I) RNA editing is the most prevalent type of RNA modification in mammals and is catalyzed by adenosine deaminase acting on the RNA (ADAR) family of enzymes that recognize double-stranded RNAs (dsRNAs). Inosine mimics guanosine (G) in base pairing with cytidine (C), thereby A-to-I RNA editing alters dsRNA secondary structure. Inosine is also recognized as guanosine by the splicing and translation machineries, resulting in mRNA alternative splicing and protein recoding. Therefore, A-to-I RNA editing is an important mechanism that causes and regulates "RNA mutations" in both normal physiology and diseases including cancer. In this chapter, we reviewed current paradigms and developments in the field of A-to-I RNA editing in the context of cancer.


Assuntos
Neoplasias , RNA , Animais , Humanos , RNA/genética , RNA/metabolismo , Edição de RNA , Neoplasias/genética , Nucleotídeos/metabolismo , Inosina/genética , Inosina/metabolismo , Adenosina/genética , Adenosina/metabolismo , Guanosina/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
2.
Int Arch Allergy Immunol ; 184(10): 1010-1021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37336194

RESUMO

INTRODUCTION: Previous studies have indicated the ERBB2 genetic variants in the 17q12 locus might be associated with asthma; however, the functional effects of these variants on asthma risk remain inconclusive. This study aimed to characterize the functional roles of asthma-associated ERBB2 single nucleotide polymorphisms (SNPs) in asthma pathogenesis by performing genetic association and functional analysis studies. METHODS: This study belongs to a part of an ongoing Singapore/Malaysia cross-sectional genetics and epidemiological study (SMCSGES). Genotype-phenotype associations were assessed by performing a genotyping assay on n = 4,348 ethnic Chinese individuals from the SMCSGES cohort. The phosphorylation levels of receptors and signaling proteins in the MAPK signaling cascades, including ErbB2, EGFR, and ERK1/2, were compared across the genotypes of asthma-associated SNPs through in vitro and ex vivo approaches. RESULTS: The ERBB2 tag-SNP rs1058808 was significantly associated with allergic asthma, with the allele "G" identified as protective against the disease (adjusted logistic p = 6.56 × 10-9, OR = 0.625, 95% CI: 0.544-0.718). The allele "G" of rs1058808 resulted in a Pro1170Ala mutation that results in lower phosphorylation levels of ErbB2 in HaCat cells (p < 0.001), whereas the overall ERBB2 mRNA expression and the phosphorylation levels of EGFR remained unaffected. In the SMCSGES cohort, individuals carrying the genotype "GG" of rs1058808 had lower phosphorylated ERK1/2 proteins in the MAPK signaling cascade. A lower phosphorylation level of ERK1/2 was also associated with reduced asthma risk. CONCLUSIONS: The present findings highlighted the involvement of a functional exonic variant of ERBB2 in asthma development via modulating the MAPK signaling cascade.


Assuntos
Asma , Sistema de Sinalização das MAP Quinases , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Estudos Transversais , Transdução de Sinais/fisiologia , Genótipo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Asma/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
3.
Mol Ther ; 29(11): 3258-3273, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33974998

RESUMO

Dysregulated adenosine-to-inosine (A-to-I) RNA editing is implicated in various cancers. However, no available RNA editing inhibitors have so far been developed to inhibit cancer-associated RNA editing events. Here, we decipher the RNA secondary structure of antizyme inhibitor 1 (AZIN1), one of the best-studied A-to-I editing targets in cancer, by locating its editing site complementary sequence (ECS) at the 3' end of exon 12. Chemically modified antisense oligonucleotides (ASOs) that target the editing region of AZIN1 caused a substantial exon 11 skipping, whereas ECS-targeting ASOs effectively abolished AZIN1 editing without affecting splicing and translation. We demonstrate that complete 2'-O-methyl (2'-O-Me) sugar ring modification in combination with partial phosphorothioate (PS) backbone modification may be an optimal chemistry for editing inhibition. ASO3.2, which targets the ECS, specifically inhibits cancer cell viability in vitro and tumor incidence and growth in xenograft models. Our results demonstrate that this AZIN1-targeting, ASO-based therapeutics may be applicable to a wide range of tumor types.


Assuntos
Proteínas de Transporte/genética , Marcação de Genes , Edição de RNA , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Modelos Animais de Doenças , Éxons , Regulação Neoplásica da Expressão Gênica , Marcação de Genes/métodos , Terapia Genética/métodos , Humanos , Camundongos , Neoplasias/genética , Neoplasias/terapia , Oligonucleotídeos Antissenso/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nanoscale Res Lett ; 14(1): 376, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31845087

RESUMO

A well-established method for treating cancerous tumors is magnetic hyperthermia, which uses localized heat generated by the relaxation mechanism of magnetic nanoparticles (MNPs) in a high-frequency alternating magnetic field. In this work, we investigate the heating efficiency of cylindrical NiFe MNPs, fabricated by template-assisted pulsed electrodeposition combined with differential chemical etching. The cylindrical geometry of the MNP enables the formation of the triple vortex state, which increases the heat generation efficiency by four times. Using time-dependent calorimetric measurements, the specific absorption rate (SAR) of the MNPs was determined and compared with the numerical calculations from micromagnetic simulations and vibrating sample magnetometer measurements. The magnetization reversal of high aspect ratios MNPs showed higher remanent magnetization and low-field susceptibility leading to higher hysteresis losses, which was reflected in higher experimental and theoretical SAR values. The SAR dependence on magnetic field strength exhibited small SAR values at low magnetic fields and saturates at high magnetic fields, which is correlated to the coercive field of the MNPs and a characteristic feature of ferromagnetic MNPs. The optimization of cylindrical NiFe MNPs will play a pivotal role in producing high heating performance and biocompatible magnetic hyperthermia agents.

5.
Cell Death Discov ; 4: 49, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29736266

RESUMO

The ability to control or manipulate the pathways leading to cell death plays a pivotal role in cancer treatment. We demonstrate magneto-actuation of magnetic nanoparticles (MNPs) to induce different cell death signaling pathways, exemplifying the intricate interplay between apoptosis and necrosis. In vitro cell experiments show the cell viabilities decreases with increasing field strength and is lower in cells treated with low aspect ratio MNPs. In a strong vertical magnetic field gradient, the MNPs were able to apply sufficient force on the cell to trigger the intracellular pathway for cell apoptosis, thus significantly reducing the cell viability. The quantification of apoptotic and necrotic cell populations by fluorescence dual staining attributed the cell death mechanism to be predominantly apoptosis in a magnetic field gradient. In contrast, the MNPs in an alternating magnetic field gradient can effectively rupture the cell membrane leading to higher lactate dehydrogenase leakage and lower cell viability, proving to be an effective induction of cell death via necrosis.

6.
Sci Rep ; 7(1): 10919, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883430

RESUMO

We report on a highly efficient magneto-actuated cancer cell apoptosis method using a biaxial pulsed magnetic field configuration, which maximizes the induced magnetic torque. The light transmissivity dynamics show that the biaxial magnetic field configuration can actuate the magnetic nanoparticles with higher responsiveness over a wide range of frequencies as compared to uniaxial field configurations. Its efficacy was demonstrated in in vitro cell destruction experiments with a greater reduction in cell viability. Magnetic nanoparticles with high aspect ratios were also found to form a triple vortex magnetization at remanence which increases its low field susceptibility. This translates to a larger magneto-mechanical actuated force at low fields and 12% higher efficacy in cell death as compared to low aspect ratio nanoparticles.


Assuntos
Apoptose/efeitos da radiação , Células HeLa/fisiologia , Células HeLa/efeitos da radiação , Campos Magnéticos , Nanopartículas Metálicas/efeitos da radiação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA