Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 23(1): 345, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770919

RESUMO

BACKGROUND: Most lung cancer patients worldwide (stage IV non-small cell lung cancer, NSCLC) have a poor survival: 25%-30% patients die < 3 months. Yet, of those surviving > 3 months, 10%-15% patients survive (very) long. Astragali radix (AR) is an effective traditional Chinese medicine widely used for non-small cell lung cancer (NSCLC). However, the pharmacological mechanisms of AR on NSCLC remain to be elucidated. METHODS: Ultra Performance Liquid Chromatography system coupled with Q-Orbitrap HRMS (UPLC-Q-Orbitrap HRMS) was performed for the qualitative analysis of AR components. Then, network module analysis and molecular docking-based approach was conducted to explore underlying mechanisms of AR on NSCLC. The target genes of AR were obtained from four databases including TCMSP (Traditional Chinese Medicine Systems Pharmacology) database, ETCM (The Encyclopedia of TCM) database, HERB (A high-throughput experiment- and reference-guided database of TCM) database and BATMAN-TCM (a Bioinformatics Analysis Tool for Molecular mechanism of TCM) database. NSCLC related genes were screened by GEO (Gene Expression Omnibus) database. The STRING database was used for protein interaction network construction (PIN) of AR-NSCLC shared target genes. The critical PIN were further constructed based on the topological properties of network nodes. Afterwards the hub genes and network modules were analyzed, and enrichment analysis were employed by the R package clusterProfiler. The Autodock Vina was utilized for molecular docking, and the Gromacs was utilized for molecular dynamics simulations Furthermore, the survival analysis was performed based on TCGA (The Cancer Genome Atlas) database. RESULTS: Seventy-seven AR components absorbed in blood were obtained. The critical network was constructed with 1447 nodes and 28,890 edges. Based on topological analysis, 6 hub target genes and 7 functional modules were gained. were obtained including TP53, SRC, UBC, CTNNB1, EP300, and RELA. After module analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that AR may exert therapeutic effects on NSCLC by regulating JAK-STAT signaling pathway, PI3K-AKT signaling pathway, ErbB signaling pathway, as well as NFkB signaling pathway. After the intersection calculation of the hub targets and the proteins participated in the above pathways, TP53, SRC, EP300, and RELA were obtained. These proteins had good docking affinity with astragaloside IV. Furthermore, RELA was associated with poor prognosis of NSCLC patients. CONCLUSIONS: This study could provide chemical component information references for further researches. The potential pharmacological mechanisms of AR on NSCLC were elucidated, promoting the clinical application of AR in treating NSCLC. RELA was selected as a promising candidate biomarker affecting the prognosis of NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Simulação de Acoplamento Molecular , Neoplasias Pulmonares/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Mapas de Interação de Proteínas
2.
Phytomedicine ; 79: 153336, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32949888

RESUMO

BACKGROUND: The traditional Chinese Medicine (TCM) herbal formula Lian Hua Qing Wen (LHQW) improves the results of COVID-19 treatment. Three very recent studies analyzed with network pharmacology some working mechanisms of LHQW. However, we used more techniques and also included Angiotensin converting enzyme 2 (ACE2) (a SARS-CoV receptor, possibly the viral entry point in alveolar lung cells) and the immune system, as cytokine storm is essential in the late phase. PURPOSE: Extensive detailed Network Pharmacology analysis of the LHQW- treatment mechanism in COVID-19. METHODS: TCM-herb-meridian and protein interaction network (PIN) of LHQW, based on LHQW herbs meridian information and the protein-protein interaction (PPI) information of the LHQW-component targets. Hub and topological property analyses to obtain crucial targets and construct the crucial LHQW-PIN. Functional modules determination using MCODE, GO and KEGG pathway analysis of biological processes and pathway enrichment. Intersection calculations between the LHQW-proteins and ACE2 co-expression-proteins. RESULTS: LHQW herbs have relationships to Stomach-, Heart-, Liver- and Spleen-systems, but most (10 of the 13 herbs) to the Lung system, indicating specific effects in lung diseases. The crucial LHQW PIN has the scale-free property, contains 2,480 targets, 160,266 PPIs and thirty functional modules. Six modules are enriched in leukocyte-mediated immunity, the interferon-gamma-mediated signaling pathway, immune response regulating signaling pathway, interleukin 23 mediated signaling pathway and Fc gamma receptor-mediated phagocytosis (GO analysis). These 6 are also enriched in cancer, immune system-, and viral infection diseases (KEGG). LHQW shared 189 proteins with ACE2 co-expression proteins. CONCLUSIONS: Detailed network analysis shows, that LHQW herbal TCM treatment modulates the inflammatory process, exerts antiviral effects and repairs lung injury. Moreover, it also relieves the "cytokine storm" and improves ACE2-expression-disorder-caused symptoms. These innovative findings give a rational pharmacological basis and support for treating COVID-19 and possibly other diseases with LHQW.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Enzima de Conversão de Angiotensina 2 , Antivirais , Betacoronavirus , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Humanos , Pandemias , Peptidil Dipeptidase A , Pneumonia Viral , SARS-CoV-2 , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
3.
Int J Pharm ; 578: 119043, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31962190

RESUMO

This study aimed to develop an evaluation approach for supersaturation by employing an in vitro bio-mimicking apparatus designed to predict in vivo performance. The Biphasic Gastrointestinal Simulator (BGIS) is composed of three chambers with absorption phases that represent the stomach, duodenum, and jejunum, respectively. The concentration of apatinib in each chamber was detected by fiber optical probes in situ. The dissolution data and the pharmacokinetic data were correlated by GastroplusTM. The precipitates were characterized by polarizing microscope, Scanning Electron Microscopy, Powder X-ray diffraction and Differential scanning calorimetry. According to the results, Vinylpyrrolidone-vinyl acetate copolymer (CoPVP) prolonged supersaturation by improving solubility and inhibiting crystallization, while Hydroxypropyl methylcellulose (HPMC) prolonged supersaturation by inhibiting crystallization alone. Furthermore, a predictive in vitro-in vivo correlation was established, which confirmed the anti-precipitation effect of CoPVP and HPMC on in vitro performance and in vivo behavior. In conclusion, CoPVP and HPMC increased and prolonged the supersaturation of apatinib, and then improved its bioavailability. Moreover, BGIS was demonstrated to be a significant approach for simulating in vivo conditions for in vitro-in vivo correlation in a supersaturation study. This study presents a promising approach for evaluating supersaturation, screening precipitation inhibitors in vitro, and predicting their performances in vivo.


Assuntos
Mucosa Gástrica/metabolismo , Derivados da Hipromelose , Absorção Intestinal , Povidona/análogos & derivados , Administração Oral , Animais , Disponibilidade Biológica , Duodeno , Derivados da Hipromelose/administração & dosagem , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacocinética , Jejuno , Masculino , Camundongos Endogâmicos C57BL , Povidona/administração & dosagem , Povidona/química , Povidona/farmacocinética , Piridinas/administração & dosagem , Piridinas/sangue , Piridinas/química , Piridinas/farmacocinética , Estômago
4.
Zhongguo Zhong Yao Za Zhi ; 40(7): 1311-5, 2015 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-26281553

RESUMO

This study aims to develop a method for determination of beta-elemene, curcumol, germacrone and neocurdione in the volatile oil of Curcuma phaeocaulis, and to provide the basis of the quality control method for the volatile oil of C. phaeocaulis and the related preparations. Based on GC-MS, the 4 main compounds were simultaneously determined, with the internal standard n-tridecane. The Agilent 19091S-433 column (0.25 microm x 250 microm x 30 m) was adopted at the temperature of 250 degrees C, the programmed temperature method (60 degrees C for 1 min, 5 degrees C x min x to 110 degrees C for 5 min, 1 degrees C x min(-1) to 140 degrees C, 5 degrees C x min(-1) to 160 degrees C, 10 degrees C x min(-1) to 240 degrees C) was used. Helium gas was used as the carrier gas at a constant flow rat of 1 mL x min(-1), with an injection volume of 1 RL. Mass spectra were taken at 70 eV; the ion-source temperature was 200 degrees C. The relation time and character acteristic ions for each target compound were determined by full scan mode and SIM, and m/z 85.1, 93.1, 121.1, 107.1 and 180.1 were the detection ions of n-tridecane, beta-elemene, curcumol, germacrone and neocurdione. As a result, beta-elemene, curcumol, germacrone and neocurdione were all detected with good separation. They were all in a good linear relationship within each concentration scope. The average recovery rates were in the range of 98.2%-101%. So, the method can be used to control the quality of the volatile of C. phaeocaulis Val. and the preparations related.


Assuntos
Curcuma/química , Medicamentos de Ervas Chinesas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óleos Voláteis/química , Sesquiterpenos de Germacrano/análise , Sesquiterpenos/análise , Ácido Acético/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Óleos Voláteis/isolamento & purificação , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Sesquiterpenos/isolamento & purificação , Sesquiterpenos de Germacrano/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA