Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
PNAS Nexus ; 3(2): pgae038, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344009

RESUMO

To date, there are no efficacious translational solutions for end-stage urinary bladder dysfunction. Current surgical strategies, including urinary diversion and bladder augmentation enterocystoplasty (BAE), utilize autologous intestinal segments (e.g. ileum) to increase bladder capacity to protect renal function. Considered the standard of care, BAE is fraught with numerous short- and long-term clinical complications. Previous clinical trials employing tissue engineering approaches for bladder tissue regeneration have also been unable to translate bench-top findings into clinical practice. Major obstacles still persist that need to be overcome in order to advance tissue-engineered products into the clinical arena. These include scaffold/bladder incongruencies, the acquisition and utility of appropriate cells for anatomic and physiologic tissue recapitulation, and the choice of an appropriate animal model for testing. In this study, we demonstrate that the elastomeric, bladder biomechanocompatible poly(1,8-octamethylene-citrate-co-octanol) (PRS; synthetic) scaffold coseeded with autologous bone marrow-derived mesenchymal stem cells and CD34+ hematopoietic stem/progenitor cells support robust long-term, functional bladder tissue regeneration within the context of a clinically relevant baboon bladder augmentation model simulating bladder trauma. Partially cystectomized baboons were independently augmented with either autologous ileum or stem-cell-seeded small-intestinal submucosa (SIS; a commercially available biological scaffold) or PRS grafts. Stem-cell synergism promoted functional trilayer bladder tissue regeneration, including whole-graft neurovascularization, in both cell-seeded grafts. However, PRS-augmented animals demonstrated fewer clinical complications and more advantageous tissue characterization metrics compared to ileum and SIS-augmented animals. Two-year study data demonstrate that PRS/stem-cell-seeded grafts drive bladder tissue regeneration and are a suitable alternative to BAE.

3.
J Exp Med ; 220(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37615937

RESUMO

Recent studies suggest that training of innate immune cells such as tissue-resident macrophages by repeated noxious stimuli can heighten host defense responses. However, it remains unclear whether trained immunity of tissue-resident macrophages also enhances injury resolution to counterbalance the heightened inflammatory responses. Here, we studied lung-resident alveolar macrophages (AMs) prechallenged with either the bacterial endotoxin or with Pseudomonas aeruginosa and observed that these trained AMs showed greater resilience to pathogen-induced cell death. Transcriptomic analysis and functional assays showed greater capacity of trained AMs for efferocytosis of cellular debris and injury resolution. Single-cell high-dimensional mass cytometry analysis and lineage tracing demonstrated that training induces an expansion of a MERTKhiMarcohiCD163+F4/80low lung-resident AM subset with a proresolving phenotype. Reprogrammed AMs upregulated expression of the efferocytosis receptor MERTK mediated by the transcription factor KLF4. Adoptive transfer of these trained AMs restricted inflammatory lung injury in recipient mice exposed to lethal P. aeruginosa. Thus, our study has identified a subset of tissue-resident trained macrophages that prevent hyperinflammation and restore tissue homeostasis following repeated pathogen challenges.


Assuntos
Macrófagos Alveolares , Imunidade Treinada , Animais , Camundongos , Transferência Adotiva , c-Mer Tirosina Quinase/genética , Fagocitose
4.
Am J Pathol ; 192(12): 1779-1794, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36063899

RESUMO

The observation that diabetic retinopathy (DR) typically takes decades to develop suggests the existence of an endogenous system that protects from diabetes-induced damage. To investigate the existance of such a system, primary human retinal endothelial cells were cultured in either normal glucose (5 mmol/L) or high glucose (30 mmol/L; HG). Prolonged exposure to HG was beneficial instead of detrimental. Although tumor necrosis factor-α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 was unaffected after 1 day of HG, it waned as the exposure to HG was extended. Similarly, oxidative stress-induced death decreased with prolonged exposure to HG. Furthermore, mitochondrial functionality, which was compromised by 1 day of HG, was improved by 10 days of HG, and this change required increased clearance of damaged mitochondria (mitophagy). Finally, antagonizing mitochondrial dynamics compromised the cells' ability to endure HG: susceptibility to cell death increased, and basal barrier function and responsiveness to vascular endothelial growth factor deteriorated. These observations indicate the existence of an endogenous system that protects human retinal endothelial cells from the deleterious effects of HG. Hyperglycemia-induced mitochondrial adaptation is a plausible contributor to the mechanism responsible for the delayed onset of DR; loss of hyperglycemia-induced mitochondrial adaptation may set the stage for the development of DR.


Assuntos
Retinopatia Diabética , Hiperglicemia , Humanos , Mitofagia , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Glucose/metabolismo , Hiperglicemia/patologia , Retinopatia Diabética/patologia
5.
Proc Natl Acad Sci U S A ; 119(38): e2205454119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095190

RESUMO

Trastuzumab is the first-line therapy for human epidermal growth factor receptor 2-positive (HER2+) breast cancer, but often patients develop acquired resistance. Although other agents are in clinical use to treat trastuzumab-resistant (TR) breast cancer; still, the patients develop recurrent metastatic disease. One of the primary mechanisms of acquired resistance is the shedding/loss of the HER2 extracellular domain, where trastuzumab binds. We envisioned any new agent acting downstream of the HER2 should overcome trastuzumab resistance. The mixed lineage kinase 3 (MLK3) activation by trastuzumab is necessary for promoting cell death in HER2+ breast cancer. We designed nanoparticles loaded with MLK3 agonist ceramide (PPP-CNP) and tested their efficacy in sensitizing TR cell lines, patient-derived organoids, and patient-derived xenograft (PDX). The PPP-CNP activated MLK3, its downstream JNK kinase activity, and down-regulated AKT pathway signaling in TR cell lines and PDX. The activation of MLK3 and down-regulation of AKT signaling by PPP-CNP induced cell death and inhibited cellular proliferation in TR cells and PDX. The apoptosis in TR cells was dependent on increased CD70 protein expression and caspase-9 and caspase-3 activities by PPP-CNP. The PPP-CNP treatment alike increased the expression of CD70, CD27, cleaved caspase-9, and caspase-3 with a concurrent tumor burden reduction of TR PDX. Moreover, the expressions of CD70 and ceramide levels were lower in TR than sensitive HER2+ human breast tumors. Our in vitro and preclinical animal models suggest that activating the MLK3-CD70 axis by the PPP-CNP could sensitize/overcome trastuzumab resistance in HER2+ breast cancer.


Assuntos
Antineoplásicos Imunológicos , Neoplasias da Mama , Ligante CD27 , Resistencia a Medicamentos Antineoplásicos , MAP Quinase Quinase Quinases , Nanopartículas , Trastuzumab , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Ligante CD27/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Ceramidas/química , Feminino , Humanos , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/análise , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
6.
Methods Mol Biol ; 2248: 63-71, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33185867

RESUMO

TNF receptor superfamily comprises many T-cell costimulatory receptors, including TNFRSF1, TNFRSF2, TNFRSF4 (OX40), TNFRSF9 (4-1BB), TNFRSF18 (GITR), and TNFRSF7 (CD27). Signaling through these costimulatory stimulatory receptors can promote conventional T-cell (Tconv) proliferation, and effector functions in an antigen-dependent manner. Thus, agonistic antibodies and ligands for OX40, 4-1BB, GITR, and CD27 have been tested for inducing T-cell-mediated antitumor responses in several cancers. However, recently emerging reports show critical role for TNFR signaling in regulatory T-cell (Treg) differentiation and expansion, which might suppress effector T-cell proliferation and functions. Here, we show preferential over expression of TNFR2, OX40, 4-1BB, and GITR in Treg cells over Tconv cells, and the ability of OX40L and GITRL to induce selective proliferation of Treg cells, but not Tconv cells, in an antigen-independent manner. We describe the standard protocols used for Affymetrix gene expression profiling, T-cell isolation, and Cell Trace Violet-based cell proliferation assay.


Assuntos
Antígenos/imunologia , Ativação Linfocitária/imunologia , Ligante OX40/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Necrose Tumoral/metabolismo , Animais , Biomarcadores , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Imunofenotipagem , Ligantes , Ativação Linfocitária/genética , Camundongos , Camundongos Transgênicos , Família Multigênica , Fatores de Necrose Tumoral/genética
7.
Nat Immunol ; 21(11): 1430-1443, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32839607

RESUMO

Macrophages demonstrate remarkable plasticity that is essential for host defense and tissue repair. The tissue niche imprints macrophage identity, phenotype and function. The role of vascular endothelial signals in tailoring the phenotype and function of tissue macrophages remains unknown. The lung is a highly vascularized organ and replete with a large population of resident macrophages. We found that, in response to inflammatory injury, lung endothelial cells release the Wnt signaling modulator Rspondin3, which activates ß-catenin signaling in lung interstitial macrophages and increases mitochondrial respiration by glutaminolysis. The generated tricarboxylic acid cycle intermediate α-ketoglutarate, in turn, serves as the cofactor for the epigenetic regulator TET2 to catalyze DNA hydroxymethylation. Notably, endothelial-specific deletion of Rspondin3 prevented the formation of anti-inflammatory interstitial macrophages in endotoxemic mice and induced unchecked severe inflammatory injury. Thus, the angiocrine-metabolic-epigenetic signaling axis specified by the endothelium is essential for reprogramming interstitial macrophages and dampening inflammatory injury.


Assuntos
Reprogramação Celular , Metabolismo Energético , Epigênese Genética , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Trombospondinas/genética , Animais , Biomarcadores , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunofluorescência , Inflamação/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Trombospondinas/metabolismo
8.
Clin Adv Periodontics ; 10(4): 181-185, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32749743

RESUMO

INTRODUCTION: The management of gingival recession associated with esthetic concerns and root hypersensitivity is challenging, and its sequelae is based on the assessment of etiological factors and the degree of tissue involvement. Procedures using pedicle flaps, free soft tissue grafts, combination of pedicle flaps with grafts, barrier membranes, and the use of platelet concentrates are all effective for this purpose. The use of the third-generation platelet concentrate, advanced platelet-rich fibrin (A-PRF), has evolved as a promising regenerative material for root coverage procedure wherein it acts as a scaffold and also accelerates wound healing due to its dense fibrin meshwork. CASE PRESENTATION: This case report, discusses treating an isolated maxillary Miller Class I recession in a 25-year-old male patient by a periosteal inversion method along with the A-PRF membrane. A partial thickness flap was reflected; periosteum was inverted; and an A-PRF membrane was placed over the denuded root surface which aided in enhanced regeneration; 100% root coverage was obtained as seen in follow-up visits. CONCLUSION: The periosteal inversion technique along with an A-PRF membrane seems to be a novel approach in managing an isolated Miller Class I maxillary gingival recession.


Assuntos
Retração Gengival , Fibrina Rica em Plaquetas , Adulto , Estética Dentária , Fibrina , Retração Gengival/cirurgia , Humanos , Masculino , Resultado do Tratamento
9.
J Immunol Methods ; 463: 112-121, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30321549

RESUMO

BACKGROUND AND PURPOSE: Phospho flow cytometry is a powerful technique to analyze signaling in rare cell populations. This technique, however, requires harsh conditions for cell fixation and permeabilization, which can denature surface antigens or antibody-conjugated fluorochromes. These are among several technical limitations which have been a barrier to quantify signaling in unique B cell subsets. One such immature subset, transitional B cells (TrBs), may play a role in suppressing solid organ transplant rejection, graft-versus-host disease, autoimmunity, and even the immune response to malignancy. Here we sought to optimize a protocol for quantification of signaling in human TrBs compared with mature B cell subsets. RESULTS: TrBs were defined by surface marker expression as CD19+CD24hiCD38hi. Key parameters optimized included antibody clone selection, sequence of surface epitope labeling in relation to paraformaldehyde-based fixation and methanol-based permeabilization, photomultiplier tube (PMT) voltages, and compensation. Special attention was paid to labeling of CD38 with regard to these parameters, and an optimized protocol enabled reliable identification of TrBs, naïve (CD24+CD38+), early memory (CD24hiCD38-), and late memory (CD24-CD38-) B cells. Phospho flow cytometry enabled simultaneous quantification of phosphorylation among at least three different signaling molecules within the same sample. Among normal donors, transitional B cells exhibited diminished mitogen activated protein kinase/extracellular signal-regulated kinase and Akt phospho signaling upon nonspecific stimulation with phorbol 12-myristate 13-acetateand ionomycin stimulation. CONCLUSIONS: We optimized an effective protocol to quantify B cell subset signaling upon stimulation. Such a protocol may ultimately serve as the basis for assessing dysfunctional B cell signaling in disease, predict clinical outcomes, and monitor response to B cell-directed therapies.


Assuntos
Antígenos CD/imunologia , Subpopulações de Linfócitos B , Citometria de Fluxo/métodos , Memória Imunológica , Sistema de Sinalização das MAP Quinases/imunologia , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Acetato de Tetradecanoilforbol/farmacologia
10.
Sci Rep ; 6: 32925, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27611009

RESUMO

Antigen uptake, processing and presentation by antigen presenting cells (APCs) are tightly coupled processes which consequently lead to the activation of innate and adaptive immune responses. However, the regulatory role of microRNA (miRNAs) in these critical pathways is poorly understood. In this study, we show that overexpression of miR-24, miR-30b and miR-142-3p attenuates uptake and processing of soluble antigen ovalbumin (Ova) in primary human macrophages and dendritic cells. MiRNA mimic transfected APCs exhibit defects in antigen presentation (Ova and CMV antigen) to CD4+ T-cells leading to reduced cell proliferation. Using transgenic OT-II mice we demonstrated that this impairment in T-cell proliferation is specific to antigen provided i.e., Ova. Further, human T-cells co-cultured with miRNA transfected dendritic cells secrete low levels of T helper (Th)-1 polarization associated cytokines. Analysis of molecules regulating APC and T-cell receptor interaction shows miRNA-mediated induced expression of Programmed Death-Ligand 1 (PD-L1) which inhibits T-cell proliferation. Blocking PD-L1 with antibodies rescues miRNA-mediated inhibition of T cell priming by DCs. These results uncover regulatory functions of miR-24, miR-30b and miR-142-3p in pairing innate and adaptive components of immunity.


Assuntos
Apresentação de Antígeno , Células Dendríticas/imunologia , Macrófagos/imunologia , MicroRNAs/imunologia , Animais , Antígeno B7-H1/genética , Células Dendríticas/metabolismo , Regulação da Expressão Gênica , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/fisiologia
11.
J Mater Chem B ; 3(41): 8188-8196, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-32262876

RESUMO

Presented are a set of procedures to produce water-soluble AgInS2/ZnS near-infrared emitting quantum dots for use as biological imaging agents. The known difficulty of producing near-infrared core/shell materials is resolved by overcoating the AgInS2 cores at a low temperature using highly reactive precursors. Several methods are explored to impart water solubility of the hydrophobic as-prepared materials. Insofar as achieving aqueous dispersion of quantum dots has only limited biological utility, several methods to further functionalize them are examined. In vivo studies are conducted using these quantum dots to demonstrate the ability to model delivery of nanoparticles to the tumour microenvironment.

12.
Clin Immunol ; 145(3): 209-23, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23110942

RESUMO

Previous studies have reported alterations in numbers or function of regulatory T (Treg) cells in myasthenia gravis (MG) patients, but published results have been inconsistent, likely due to the isolation of heterogenous "Treg" populations. In this study, we used surface CD4, CD25(high), and CD127(low/-) expression to isolate a relatively pure population of Tregs, and established that there was no alteration in the relative numbers of Tregs within the peripheral T cell pool in MG patients. In vitro proliferation assays, however, demonstrated that Treg-mediated suppression of responder T (Tresp) cells was impaired in MG patients and was associated with a reduced expression of FOXP3 in isolated Tregs. Suppression of both polyclonal and AChR-activated Tresp cells from MG patients could be restored using Tregs isolated from healthy controls, indicating that the defect in immune regulation in MG is primarily localized to isolated Treg cells, and revealing a potential novel therapeutic target.


Assuntos
Miastenia Gravis/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Células Apresentadoras de Antígenos/imunologia , Antígenos CD4/metabolismo , Estudos de Casos e Controles , Separação Celular , Citocinas/biossíntese , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Técnicas In Vitro , Interleucina-10/biossíntese , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/genética , Miastenia Gravis/metabolismo , Receptores Colinérgicos/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Adulto Jovem
13.
PLoS One ; 6(7): e21949, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21779356

RESUMO

Earlier, we have shown that GM-CSF-exposed CD8α- DCs that express low levels of pro-inflammatory cytokines IL-12 and IL-1ß can induce Foxp3+ Tregs leading to suppression of autoimmunity. Here, we examined the differential effects of IL-12 and IL-1ß on Foxp3 expression in T cells when activated in the presence and absence of DCs. Exogenous IL-12 abolished, but IL-1ß enhanced, the ability of GM-CSF-exposed tolerogenic DCs to promote Foxp3 expression. Pre-exposure of DCs to IL-1ß and IL-12 had only a modest effect on Foxp3- expressing T cells; however, T cells activated in the absence of DCs but in the presence of IL-1ß or IL-12 showed highly significant increase and decrease in Foxp3+ T cell frequencies respectively suggesting direct effects of these cytokines on T cells and a role for IL-1ß in promoting Foxp3 expression. Importantly, purified CD4+CD25+ cells showed a significantly higher ability to maintain Foxp3 expression when activated in the presence of IL-1ß. Further analyses showed that the ability of IL-1ß to maintain Foxp3 expression in CD25+ T cells was dependent on TGF-ß1 and IL-2 expression in Foxp3+Tregs and CD25- effectors T cells respectively. Exposure of CD4+CD25+ T cells to IL-1ß enhanced their ability to suppress effector T cell response in vitro and ongoing experimental autoimmune thyroidits in vivo. These results show that IL-1ß can help enhance/maintain Tregs, which may play an important role in maintaining peripheral tolerance during inflammation to prevent and/or suppress autoimmunity.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Interleucina-1beta/farmacologia , Interleucina-2/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Fatores de Transcrição Forkhead/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-2/farmacologia , Camundongos , Linfócitos T Reguladores/efeitos dos fármacos , Tireoglobulina/genética , Tireoglobulina/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
14.
J Leukoc Biol ; 89(2): 235-49, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21048215

RESUMO

In our earlier work, we had shown that GM-CSF treatment of CBA/J mice can suppress ongoing thyroiditis by inducing tolerogenic CD8α(-) DCs, which helped expand and/or induce CD4(+)Foxp3(+) Tregs. To identify the primary cell type that was affected by the GM-CSF treatment and understand the mechanism by which Tregs were induced, we compared the effect of GM-CSF on matured spDCs and BMDC precursors in vitro. Matured spDCs exposed to GM-CSF ex vivo induced only a modest increase in the percentage of Foxp3-expressing T cells in cocultures. In contrast, BM cells, when cultured in the presence of GM-CSF, gave rise to a population of CD11c(+)CD11b(Hi)CD8α(-) DCs (BMDCs), which were able to expand Foxp3(+) Tregs upon coculture with CD4(+) T cells. This contact-dependent expansion occurred in the absence of TCR stimulation and was abrogated by OX40L blockage. Additionally, the BMDCs secreted high levels of TGF-ß, which was required and sufficient for adaptive differentiation of T cells to Foxp3(+) Tregs, only upon TCR stimulation. These results strongly suggest that the BMDCs differentiated by GM-CSF can expand nTregs and induce adaptive Tregs through different mechanisms.


Assuntos
Imunidade Adaptativa , Células da Medula Óssea/imunologia , Células Dendríticas/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Células Progenitoras Linfoides/imunologia , Linfócitos T Reguladores/imunologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/imunologia , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Tolerância Imunológica , Contagem de Linfócitos , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/metabolismo , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo
15.
Cancer Chemother Pharmacol ; 68(2): 513-24, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21085965

RESUMO

PURPOSE: Characterize the preclinical pharmacokinetics, metabolic profile, multi-species toxicology, and antitumor efficacy of azurin-p28 (NSC 745104), an amphipathic, 28 amino acid fragment (aa 50-77) of the copper containing redox protein azurin that preferentially enters cancer cells and is currently under development for treatment of p53-positive solid tumors. METHODS: An LC/MS/MS assay was developed, validated, and applied to liver microsomes, serum, and tumor cells to assess cellular uptake and metabolic stability. Pharmacokinetics was established after administration of a single intravenous dose of p28 in preclinical species undergoing chronic toxicity testing. Antitumor efficacy was assessed on human tumor xenografts. A human therapeutic dose was predicted based on efficacy and pharmacokinetic parameters. RESULTS: p28 is stable, showed tumor penetration consistent with selective entry into tumor cells and significantly inhibited p53-positive tumor growth. Renal clearance, volume of distribution, and metabolic profile of p28 was relatively similar among species. p28 was non-immunogenic and non-toxic in mice and non-human primates (NHP). The no observed adverse effect level (NOAEL) was 120 mg/kg iv in female mice. A NOAEL was not established for male mice due to decreased heart and thymus weights that was reversible and did not result in limiting toxicity. In contrast, the NOAEL for p28 in NHP was defined as the highest dose (120 mg/kg/dose; 1,440 mg/m(2)/dose) studied. The maximum-tolerated dose (MTD) for subchronic administration of p28 to mice is >240 mg/kg/dose (720 mg/m(2)/dose), while the MTD for subchronic administration of p28 to Cynomolgous sp. is >120 mg/kg (1,440 mg/m(2)/dose). The efficacious (murine) dose of p28 was 10 mg/kg ip per day. CONCLUSIONS: p28 does not exhibit preclinical immunogenicity or toxicity, has a similar metabolic profile among species, and is therapeutic in xenograft models.


Assuntos
Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Azurina/efeitos adversos , Azurina/farmacocinética , Neoplasias/tratamento farmacológico , Fragmentos de Peptídeos/farmacocinética , Proteína Supressora de Tumor p53/antagonistas & inibidores , Animais , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Azurina/metabolismo , Azurina/uso terapêutico , Biotransformação , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Nus , Nível de Efeito Adverso não Observado , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/uso terapêutico , Organismos Livres de Patógenos Específicos , Carga Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Gen Virol ; 91(Pt 2): 352-61, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19828757

RESUMO

Ebola virus causes rapidly progressive haemorrhagic fever, which is associated with severe immuosuppression. In infected dendritic cells (DCs), Ebola virus replicates efficiently and inhibits DC maturation without inducing cytokine expression, leading to impaired T-cell proliferation. However, the underlying mechanism remains unclear. In this study, we report that Ebola virus VP35 impairs the maturation of mouse DCs. When expressed in mouse immature DCs, Ebola virus VP35 prevents virus-stimulated expression of CD40, CD80, CD86 and major histocompatibility complex class II. Further, it suppresses the induction of cytokines such as interleukin (IL)-6, IL-12, tumour necrosis factor alpha and alpha/beta interferon (IFN-alpha/beta). Notably, Ebola VP35 attenuates the ability of DCs to stimulate the activation of CD4(+) T cells. Addition of type I IFN to mouse DCs only partially reverses the inhibitory effects of VP35. Moreover, VP35 perturbs mouse DC functions induced by lipopolysaccharide, an agonist of Toll-like receptor 4. Deletion of the amino terminus abolishes its activity, whereas a mutation in the RNA binding motif has no effect. Our work highlights a critical role of VP35 in viral interference in DC function with resultant deficiency in T-cell function, which may contribute to the profound virulence of Ebola virus infection.


Assuntos
Células Dendríticas/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Lipopolissacarídeos/imunologia , Proteínas Virais Reguladoras e Acessórias/imunologia , Animais , Células Cultivadas , Chlorocebus aethiops , Citocinas/genética , Citocinas/imunologia , Células Dendríticas/virologia , Ebolavirus/genética , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Células Vero , Proteínas Virais Reguladoras e Acessórias/genética
17.
Clin Immunol ; 131(2): 260-70, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19171501

RESUMO

Abnormalities in DC function are implicated in defective immune regulation that leads to type-1 diabetes (T1D) in NOD mice and humans. In this study, we used GM-CSF and Flt3-L to modulate DC function in NOD mice and observed the effects on T1D development. Treatment with either ligand at earlier stages of insulitis suppressed the development of T1D. Unlike Flt3-L, GM-CSF was more effective in suppressing T1D, even when administered at later stages of insulitis. In vitro studies and in vivo adoptive transfer experiments revealed that CD4+CD25+ T cells from GM-CSF-treated mice could suppress effector T cell response and T1D. This suppression is likely mediated through enhanced IL-10 and TGF-beta1 production. Adoptive transfer of GM-CSF exposed DCs to naive mice resulted in an expansion of Foxp3+ T cells and a significant delay in T1D onset. Our results indicate that GM-CSF acted primarily on DCs and caused an expansion of Foxp3+ Tregs which delayed the onset of T1D in NOD mice.


Assuntos
Células Dendríticas/efeitos dos fármacos , Diabetes Mellitus Tipo 1/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fatores Imunológicos/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Idade de Início , Animais , Células Dendríticas/citologia , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/fisiopatologia , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/efeitos dos fármacos
18.
Int Immunol ; 21(3): 269-82, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19174473

RESUMO

GM-CSF plays an essential role in the differentiation of dendritic cells (DCs). Our studies have shown that GM-CSF treatment can induce semi-mature DCs and CD4+CD25+ regulatory T cells (Tregs) and suppress ongoing autoimmunity in mouse models. In this study, we examined the differences in the potential of GM-CSF to exert tolerogenic function on CD8a+ and CD8a- sub-populations of DCs in vivo. We show that GM-CSF modulates CD8a-, but not CD8a+ DCs in vivo, by inhibiting the surface expression of activation markers MHC II and CD80 and production of inflammatory cytokines such as IL-12 and IL-1beta. Self-antigen [mouse thyroglobulin (mTg)] presentation by GM-CSF-exposed CD8a- DCs to T cells from mTg-primed mice induced a profound increase in the frequency of forkhead box P3 (FoxP3)-expressing T cells compared with antigen presentation by GM-CSF-exposed CD8a+ DCs and control CD8a+ and CD8a- DCs. This tolerogenic property of GM-CD8a- DCs was abrogated when IL-12 was added. GM-CSF-exposed CD8a- DCs could also induce secretion of significantly higher amounts of IL-10 by T cells from mTg-primed mice. Importantly, adoptive transfer of CD8a- DCs from GM-CSF-treated SCID mice, but not untreated mice, into wild-type CBA/J mice prevented the development of experimental autoimmune thyroiditis (EAT) in the recipient animals upon immunization with mTg. Collectively, our results show that GM-CSF renders CD8a- DCs tolerogenic, and these DCs induce Foxp3+ and IL-10+ Tregs.


Assuntos
Células Dendríticas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-10/metabolismo , Linfócitos T Reguladores/metabolismo , Tireoidite Autoimune/imunologia , Animais , Apresentação de Antígeno , Antígeno CD11c , Antígenos CD8 , Diferenciação Celular , Proliferação de Células , Células Dendríticas/imunologia , Fatores de Transcrição Forkhead/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Terapia de Imunossupressão , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-12/genética , Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos SCID , Tolerância a Antígenos Próprios , Linfócitos T Reguladores/imunologia , Tireoglobulina/imunologia , Tireoidite Autoimune/patologia , Tireoidite Autoimune/prevenção & controle , Vacinação
19.
Clin Immunol ; 128(2): 172-80, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18502693

RESUMO

We had previously observed that treatment utilizing granulocyte-macrophage colony-stimulating factor (GM-CSF) had profound effects on the induction of experimental autoimmune myasthenia gravis (EAMG), a well-characterized antibody-mediated autoimmune disease. In this study, we show that EAMG induced by repeated immunizations with acetylcholine receptor (AChR) protein in C57BL6 mice is effectively suppressed by GM-CSF treatment administered at a stage of chronic, well-established disease. In addition, this amelioration of clinical disease is accompanied by down-modulation of both autoreactive T cell, and pathogenic autoantibody responses, a mobilization of DCs with a tolerogenic phenotype, and an expansion of regulatory T cells (Tregs) that potently suppress AChR-stimulated T cell proliferation in vitro. These observations suggest that the mobilization of antigen-specific Tregs in vivo using pharmacologic agents, like GM-CSF, can modulate ongoing anti-AChR immune responses capable of suppressing antibody-mediated autoimmunity.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Miastenia Gravis Autoimune Experimental/imunologia , Animais , Anticorpos/sangue , Anticorpos/imunologia , Especificidade de Anticorpos , Divisão Celular , Doença Crônica , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Miastenia Gravis Autoimune Experimental/sangue , Miastenia Gravis Autoimune Experimental/tratamento farmacológico , Receptores Colinérgicos/imunologia , Linfócitos T Reguladores/fisiologia
20.
J Immunol ; 177(8): 5296-306, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17015715

RESUMO

Dendritic cells (DCs) have the potential to activate or tolerize T cells in an Ag-specific manner. Although the precise mechanism that determines whether DCs exhibit tolerogenic or immunogenic functions has not been precisely elucidated, growing evidence suggests that DC function is largely dependent on differentiation status, which can be manipulated using various growth factors. In this study, we investigated the effects of mobilization of specific DC subsets-using GM-CSF and fms-like tyrosine kinase receptor 3-ligand (Flt3-L)-on the susceptibility to induction of experimental autoimmune myasthenia gravis (EAMG). We administered GM-CSF or Flt3-L to C57BL/6 mice before immunization with acetylcholine receptor (AChR) and observed the effect on the frequency and severity of EAMG development. Compared with AChR-immunized controls, mice treated with Flt3-L before immunization developed EAMG at an accelerated pace initially, but disease frequency and severity was comparable at the end of the observation period. In contrast, GM-CSF administered before immunization exerted a sustained suppressive effect against the induction of EAMG. This suppression was associated with lowered serum autoantibody levels, reduced T cell proliferative responses to AChR, and an expansion in the population of FoxP3+ regulatory T cells. These results highlight the potential of manipulating DCs to expand regulatory T cells for the control of autoimmune diseases such as MG.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fatores de Transcrição Forkhead , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Miastenia Gravis Autoimune Experimental/prevenção & controle , Linfócitos T Reguladores/citologia , Animais , Doenças Autoimunes/terapia , Comunicação Celular/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Imunização , Proteínas de Membrana/administração & dosagem , Proteínas de Membrana/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Miastenia Gravis Autoimune Experimental/imunologia , Miastenia Gravis Autoimune Experimental/terapia , Receptores Colinérgicos/administração & dosagem , Receptores Colinérgicos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA