Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
AJNR Am J Neuroradiol ; 45(3): 312-319, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453408

RESUMO

BACKGROUND AND PURPOSE: Recent developments in deep learning methods offer a potential solution to the need for alternative imaging methods due to concerns about the toxicity of gadolinium-based contrast agents. The purpose of the study was to synthesize virtual gadolinium contrast-enhanced T1-weighted MR images from noncontrast multiparametric MR images in patients with primary brain tumors by using deep learning. MATERIALS AND METHODS: We trained and validated a deep learning network by using MR images from 335 subjects in the Brain Tumor Segmentation Challenge 2019 training data set. A held out set of 125 subjects from the Brain Tumor Segmentation Challenge 2019 validation data set was used to test the generalization of the model. A residual inception DenseNet network, called T1c-ET, was developed and trained to simultaneously synthesize virtual contrast-enhanced T1-weighted (vT1c) images and segment the enhancing portions of the tumor. Three expert neuroradiologists independently scored the synthesized vT1c images by using a 3-point Likert scale, evaluating image quality and contrast enhancement against ground truth T1c images (1 = poor, 2 = good, 3 = excellent). RESULTS: The synthesized vT1c images achieved structural similarity index, peak signal-to-noise ratio, and normalized mean square error scores of 0.91, 64.35, and 0.03, respectively. There was moderate interobserver agreement between the 3 raters, regarding the algorithm's performance in predicting contrast enhancement, with a Fleiss kappa value of 0.61. Our model was able to accurately predict contrast enhancement in 88.8% of the cases (scores of 2 to 3 on the 3-point scale). CONCLUSIONS: We developed a novel deep learning architecture to synthesize virtual postcontrast enhancement by using only conventional noncontrast brain MR images. Our results demonstrate the potential of deep learning methods to reduce the need for gadolinium contrast in the evaluation of primary brain tumors.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Humanos , Gadolínio , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Meios de Contraste , Imageamento por Ressonância Magnética/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-36998700

RESUMO

Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translating DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties could enable clinical review of the most uncertain regions, thereby building trust and paving the way toward clinical translation. Several uncertainty estimation methods have recently been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentage of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, highlighting the need for uncertainty quantification in medical image analyses. Finally, in favor of transparency and reproducibility, our evaluation code is made publicly available at https://github.com/RagMeh11/QU-BraTS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA