Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 50(5): 1457-1469, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36196920

RESUMO

The AAA-ATPase (ATPases associated with diverse cellular activities) valosin-containing protein (VCP), is essential for many cellular pathways including but not limited to endoplasmic reticulum-associated degradation (ERAD), DNA damage responses, and cell cycle regulation. VCP primarily identifies ubiquitylated proteins in these pathways and mediates their unfolding and degradation by the 26S proteasome. This review summarizes recent research on VCP that has uncovered surprising new ways that this ATPase is regulated, new aspects of recognition of substrates and novel pathways and substrates that utilize its activity.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Proteostase , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Adenosina Trifosfatases/metabolismo
2.
Extremophiles ; 22(6): 983-991, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30219948

RESUMO

Thermus species are widespread in natural and artificial thermal environments. Two new yellow-pigmented strains, L198T and L423, isolated from Little Hot Creek, a geothermal spring in eastern California, were identified as novel organisms belonging to the genus Thermus. Cells are Gram-negative, rod-shaped, and non-motile. Growth was observed at temperatures from 45 to 75 °C and at salinities of 0-2.0% added NaCl. Both strains grow heterotrophically or chemolithotrophically by oxidation of thiosulfate to sulfate. L198T and L423 grow by aerobic respiration or anaerobic respiration with arsenate as the terminal electron acceptor. Values for 16S rRNA gene identity (≤ 97.01%), digital DNA-DNA hybridization (≤ 32.7%), OrthoANI (≤ 87.5%), and genome-to-genome distance (0.13) values to all Thermus genomes were less than established criteria for microbial species. The predominant respiratory quinone was menaquinone-8 and the major cellular fatty acids were iso-C15:0, iso-C17:0 and anteiso-C15:0. One unidentified phospholipid (PL1) and one unidentified glycolipid (GL1) dominated the polar lipid pattern. The new strains could be differentiated from related taxa by ß-galactosidase and ß-glucosidase activity and the presence of hydroxy fatty acids. Based on phylogenetic, genomic, phenotypic, and chemotaxonomic evidence, the novel species Thermus sediminis sp. nov. is proposed, with the type strain L198T (= CGMCC 1.13590T = KCTC XXX).


Assuntos
Arseniatos/metabolismo , Thermus/genética , Tiossulfatos/metabolismo , Respiração Celular , Genoma Bacteriano , Fontes Termais/microbiologia , Metabolismo dos Lipídeos , Oxirredução , Termotolerância , Thermus/isolamento & purificação , Thermus/metabolismo
3.
Front Microbiol ; 7: 1347, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27621726

RESUMO

Zinc metalloprotease-1 (Zmp1) from Mycobacterium tuberculosis (M.tb), the tuberculosis (TB) causing bacillus, is a virulence factor involved in inflammasome inactivation and phagosome maturation arrest. We earlier reported that Zmp1 was secreted under granuloma-like stress conditions, induced Th2 cytokine microenvironment and was highly immunogenic in TB patients as evident from high anti-Zmp1 antibody titers in their sera. In this study, we deciphered a new physiological role of Zmp1 in mycobacterial dissemination. Exogenous treatment of THP-1 cells with 500 nM and 1 µM of recombinant Zmp1 (rZmp1) resulted in necrotic cell death. Apart from inducing secretion of necrotic cytokines, TNFα, IL-6, and IL-1ß, it also induced the release of chemotactic chemokines, MCP-1, MIP-1ß, and IL-8, suggesting its likely function in cell migration and mycobacterial dissemination. This was confirmed by Gap closure and Boyden chamber assays, where Zmp1 treated CHO or THP-1 cells showed ∼2 fold increased cell migration compared to the untreated cells. Additionally, Zebrafish-M. marinum based host-pathogen model was used to study mycobacterial dissemination in vivo. Td-Tomato labeled M. marinum (TdM. marinum) when injected with rZmp1 showed increased dissemination to tail region from the site of injection as compared to the untreated control fish in a dose-dependent manner. Summing up these observations along with the earlier reports, we propose that Zmp1, a multi-faceted protein, when released by mycobacteria in granuloma, may lead to necrotic cell damage and release of chemotactic chemokines by surrounding infected macrophages, attracting new immune cells, which in turn may lead to fresh cellular infections, thus assisting mycobacterial dissemination.

4.
Sci Rep ; 6: 25006, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27112593

RESUMO

A mammalian cell utilizes DNA methylation to modulate gene expression in response to environmental changes during development and differentiation. Aberrant DNA methylation changes as a correlate to diseased states like cancer, neurodegenerative conditions and cardiovascular diseases have been documented. Here we show genome-wide DNA methylation changes in macrophages infected with the pathogen M. tuberculosis. Majority of the affected genomic loci were hypermethylated in M. tuberculosis infected THP1 macrophages. Hotspots of differential DNA methylation were enriched in genes involved in immune response and chromatin reorganization. Importantly, DNA methylation changes were observed predominantly for cytosines present in non-CpG dinucleotide context. This observation was consistent with our previous finding that the mycobacterial DNA methyltransferase, Rv2966c, targets non-CpG dinucleotides in the host DNA during M. tuberculosis infection and reiterates the hypothesis that pathogenic bacteria use non-canonical epigenetic strategies during infection.


Assuntos
Proteínas de Bactérias/metabolismo , Metilação de DNA , Histonas/metabolismo , Mycobacterium tuberculosis/enzimologia , Tuberculose/genética , Mapeamento Cromossômico , Ilhas de CpG , Citosina/química , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Imunidade , Células THP-1
5.
Front Microbiol ; 7: 418, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27065979

RESUMO

Conventionally, facultative intracellular pathogen, Mycobacterium tuberculosis, the tuberculosis (TB) causing bacilli in human is cleared by cell-mediated immunity (CMI) with CD4(+) T cells playing instrumental role in protective immunity, while antibody-mediated immunity (AMI) is considered non-protective. This longstanding convention has been challenged with recent evidences of increased susceptibility of hosts with compromised AMI and monoclonal antibodies conferring passive protection against TB and other intracellular pathogens. Therefore, novel approaches toward vaccine development include strategies aiming at induction of humoral response along with CMI. This necessitates the identification of mycobacterial proteins with properties of immunomodulation and strong immunogenicity. In this study, we determined the immunogenic potential of M. tuberculosis Zinc metalloprotease-1 (Zmp1), a secretory protein essential for intracellular survival and pathogenesis of M. tuberculosis. We observed that Zmp1 was secreted by in vitro grown M. tuberculosis under granuloma-like stress conditions (acidic, oxidative, iron deficiency, and nutrient deprivation) and generated Th2 cytokine microenvironment upon exogenous treatment of peripheral blood mononulear cells PBMCs with recombinant Zmp1 (rZmp1). This was supported by recording specific and robust humoral response in TB patients in a cohort of 295. The anti-Zmp1 titers were significantly higher in TB patients (n = 121) as against healthy control (n = 62), household contacts (n = 89) and non-specific infection controls (n = 23). A significant observation of the study is the presence of equally high titers of anti-Zmp1 antibodies in a range of patients with high bacilli load (sputum bacilli load of 300+ per mL) to paucibacillary smear-negative pulmonary tuberculosis (PTB) cases. This clearly indicated the potential of Zmp1 to evoke an effective humoral response independent of mycobacterial load. Such mycobacterial proteins can be explored as antigen candidates for prime-boost vaccination strategies or extrapolated as markers for disease detection and progression.

6.
Sci Rep ; 6: 22060, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26916387

RESUMO

Mycobacterium tuberculosis (Mtb) is the most common co-infection in HIV patients and a serious co-epidemic. Apart from increasing the risk of reactivation of latent tuberculosis (TB), HIV infection also permits opportunistic infection of environmental non-pathogenic mycobacteria. To gain insights into mycobacterial survival inside host macrophages and identify mycobacterial proteins or processes that influence HIV propagation during co-infection, we employed proteomics approach to identify differentially expressed intracellular mycobacterial proteins during mono- and HIV co-infection of human THP-1 derived macrophage cell lines. Of the 92 proteins identified, 30 proteins were upregulated during mycobacterial mono-infection and 40 proteins during HIV-mycobacteria co-infection. We observed down-regulation of toxin-antitoxin (TA) modules, up-regulation of cation transporters, Type VII (Esx) secretion systems, proteins involved in cell wall lipid or protein metabolism, glyoxalate pathway and branched chain amino-acid synthesis during co-infection. The bearings of these mycobacterial factors or processes on HIV propagation during co-infection, as inferred from the proteomics data, were validated using deletion mutants of mycobacteria. The analyses revealed mycobacterial factors that possibly via modulating the host environment, increased viral titers during co-infection. The study provides new leads for investigations towards hitherto unknown molecular mechanisms explaining HIV-mycobacteria synergism, helping address diagnostics and treatment challenges for effective co-epidemic management.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Macrófagos/microbiologia , Infecções por Mycobacterium/metabolismo , Mycobacterium tuberculosis/metabolismo , Infecções Oportunistas Relacionadas com a AIDS/genética , Humanos , Infecções por Mycobacterium/genética , Fagossomos/microbiologia , Proteômica
7.
Cell Microbiol ; 18(3): 355-68, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26332641

RESUMO

Environmental mycobacteria, highly prevalent in natural and artificial (including chlorinated municipal water) niches, are emerging as new threat to human health, especially to HIV-infected population. These seemingly harmless non-pathogenic mycobacteria, which are otherwise cleared, establish as opportunistic infections adding to HIV-associated complications. Although immune-evading strategies of pathogenic mycobacteria are known, the mechanisms underlying the early events by which opportunistic mycobacteria establish infection in macrophages and influencing HIV infection are unclear. Proteomics of phagosome-enriched fractions from Mycobacterium bovis Bacillus Calmette-Guérin (BCG) mono-infected and HIV-M. bovis BCG co-infected THP-1 cells by LC-MALDI-MS/MS revealed differential distribution of 260 proteins. Validation of the proteomics data showed that HIV co-infection helped the survival of non-pathogenic mycobacteria by obstructing phagosome maturation, promoting lipid biogenesis and increasing intracellular ATP equivalents. In turn, mycobacterial co-infection up-regulated purinergic receptors in macrophages that are known to support HIV entry, explaining increased viral titers during co-infection. The mutualism was reconfirmed using clinically relevant opportunistic mycobacteria, Mycobacterium avium, Mycobacterium kansasii and Mycobacterium phlei that exhibited increased survival during co-infection, together with increase in HIV titers. Additionally, the catalogued proteins in the study provide new leads that will significantly add to the understanding of the biology of opportunistic mycobacteria and HIV coalition.


Assuntos
Coinfecção/microbiologia , Coinfecção/virologia , Infecções por HIV/microbiologia , Infecções por Mycobacterium/virologia , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Coinfecção/metabolismo , Citocinas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/microbiologia , Macrófagos/virologia , Mycobacterium/patogenicidade , Mycobacterium bovis/patogenicidade , Fagossomos/microbiologia , Fagossomos/virologia , Proteômica/métodos , Simbiose , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA